施密特望远镜(由折射和反射元件组成的望远镜)
VLoG
次浏览
更新时间:2023-05-16
施密特望远镜
由折射和反射元件组成的望远镜
基本信息
中文名 | 施密特望远镜 |
外文名 | Schmidt telescope |
组成 | 折射和反射元件 |
类别 |
改进
美国光学家贝克首先对这种系统进行了研究,经他改进的这种望远镜,称为贝克-施密特望远镜。
组成
施密特望远镜由一块接近平行平板的非球面改正透镜和一个凹球面反射镜组成。
原理
施密特望远镜光学系统
在这种情况下,除了球差和场曲外,不存在其他像差。为改正球差,施密特,B.V.不是象过去人们所做的那样,破坏这一对称成像条件,把镜面形状改成抛物面,而是在光阑处放置一块与平行平板差别不大的、非球面的改正透镜(常称施密特改正透镜)。它对于法向和倾斜入射光束在球差的改正作用上所引起的变化不大,同时折射引起的色差也很小。所以在口径和焦比相同的情况下,施密特望远镜比其他望远镜有更大的清晰视场。
优点
缺点
历史
天文专家在安装调试亿像素近地天体望远镜
1930年,德国人施密特(BernhardSchmidt)将折射望远镜和反射望远镜的优点(折射望远镜像差小但有色差而且尺寸越大越昂贵,反射望远镜没有色差、造价低廉且反射镜可以造得很大,但存在像差)结合起来,制成了第一台折反射望远镜。
2012年12月20日,我国首台亿像素近地天体望远镜在中科院紫金山天文台江苏省淮安市盱眙县观测站安装调试成功并正式启用。这架口径为1.2米的施密特望远镜在该观测站原有1600万像素望远镜的基础上升级而成。中科院紫金山天文台对该望远镜进行为期4个多月的升级换代,使其分辨率达1亿像素,在世界同类望远镜中处于领先水平。
LAMOST
LAMOST望远镜
LAMOST 是一台具有主动改正镜的中星仪式施密特望远镜。当望远镜瞄向太空中不同区域时,主动控制系统可确保 LAMOST 的各个镜坯单元始终能够把图像清晰地呈现在其焦面上。传统的施密特望远镜的特征是以主镜前的透镜作为其“眼镜”。LAMOST则利用其主动镜面,以 5 度的观测角收集遥远而模糊的天体和星系发出的微弱光线,并投射到由“Zerodur”制成的主镜上,由此再把这些光束集中到 20 米远处的焦面上。在焦面上,4,000 束光纤再次把光线导向 16 台光谱仪。这些光谱仪可以分辨 370 到 900 纳米之间的波长范围,大于可见光光谱范围。
超高速的并行处理器可实现非常高的光谱采集速率,LAMOST每晚可观测数万个宇宙天体 ——这是天文望远镜的一项世界记录。这些光谱信息可以揭示出各种星体在我们的宇宙发端之初是如何形成并生成星系的。LAMOST是世界上唯一的同时拥有如此多并行光谱通道的大孔径望远镜,也是世界上目前光谱获取率最高的望远镜。LAMOST的正式落成表明中国在世界天文观测研究领域已经处于了领先地位。