绝对无限(数学家康托尔提出的观点)
VLoG
次浏览
更新时间:2023-05-17
绝对无限
数学家康托尔提出的观点
基本信息
中文名 | 绝对无限 |
外文名 | Absolute Infinite |
定义 | 是数学家康托尔的超越超限数的无限概念 |
发现者 | 康托尔 |
拼音 | jué duì wú xiàn |
解释
绝对无限是康托尔的观点 。引证康托尔所说:
实际无限在三个上下文中出现:首先在它被认识于最完善的形式中,在完全独立的其他世界的存在中,“in Deo”的时候,这里我称呼它为绝对无限或简单地称为无限;其次在它偶然性地出现在神造世界中的时候;第三在精神“在观念上”把它掌握为数学上的量、数或序类型的时候。
一个多重列(multiplicity)被称为良序的,如果它符合所有子列都有第一个元素的条件;我把这种多重列简称为序列。我正视所有数的系统并把它指示为Ω。系统Ω依照量是“序列”而处于它的自然排序下。让我们毗连0作为给这个序列的一个额外元素,如果我们设置这个0在第一个位置上则Ω*仍是序列...通过它你可欣然的自我确信,出现在其中的所有的数都是所有它前面元素的序列的序数。Ω*(因此还有Ω)不能是相容的多重列。因为如果Ω*是相容的,则作为良序集合,数Δ将属于它,而它将大于系统Ω的所有的数;但是数Δ还属于系统Ω,因为由所有的数组成。所以Δ将大于Δ,这是一个矛盾。所以所有序数的系统Ω是不相容的,绝对无限多重列。
性质
关于绝对无限有两个有趣的性质(这使得它有宛如神的性质):
假设Ω具有独特的性质p,而其它无限集都不具有这个性质。则我们可用性质p对Ω做唯一地描述,这样一来,Ω就不是绝对的和不可定义的了。因此对Ω具有的任一性质至少有一个别的超限数也具有;进一步推理Ω的任一性质必为无限多个超限数共享,否则仍可将Ω定义为拥有这一性质的最大无限。所以假设不成立。
②不可达性:Ω不能被小于它的数构造出来。即Ω是不能从下面达到的。
推理过程与上面类似。假设Ω能被某个小于它的超限数构造出来,我们便可凭此构造对Ω作出定义。这破坏了Ω的不可定义性,所以Ω不可被小于它的数构造出来。因此我们说Ω是不能从下面达到的,或说它是不可达的。
悖论
所有序数的搜集在逻辑上不能存在,这个想法在很大程度是悖论性的。这与没有最大序数的Burali-Forti悖论有关。所有这些问题都可以回溯到,对于所有逻辑上可以定义的性质,都存在有这个性质的所有对象的一个集合的想法。但是在康托尔上述论证中,这个想法导致了困难。
更加一般地说,如A.W.Moore所表述的,集合形成的过程没有终结,因此没有作为“所有集合的全体”或“集合层次”的这种事物。任何这种总体自身必定是集合,所以位于这个层次中的某个地方而不能包含所有集合。
这个问题的标准解决可在Zermelo集合论中找到,它不允许对任意性质的无限制的集合形成。转而我们可以形成有某个给定性质并“位于没有给定集合中”的所有对象的集合(Zermelo的分离公理)。这允许在有限制意义上的集合形成,而(有希望)保存理论的相容性。
但是尽管它优雅地解决了逻辑问题,但哲学问题依旧存在。只要个体们存在这些个体的集合应该就应该存在是很自然的。在朴素的意义上,集合论可以被称为基于了这个概念。Zermelo的修正将提交给我们一个更神秘的真类的概念:在我们的理论中有着没有作为一个对象(集合)的任何形式存在的对象的类。例如,所有集合的类就是这种真类。