转炉炼钢(靠自身物理热完成炼钢的过程)
VLoG
次浏览
更新时间:2023-05-20
转炉炼钢
靠自身物理热完成炼钢的过程
转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程。转炉按耐火材料分为酸性和碱性,按气体吹入炉内的部位有顶吹、底吹和侧吹;按气体种类为分空气转炉和氧气转炉。碱性氧气顶吹和顶底复吹转炉由于其生产速度快、产量大,单炉产量高、成本低、投资少,为目前使用最普遍的炼钢设备。转炉主要用于生产碳钢、合金钢及铜和镍的冶炼。
基本信息
中文名 | 转炉炼钢 |
外文名 | Converter steelmaking |
使用装置 | 氧气 顶吹转炉,顶底复吹转炉 |
主要原料 | 铁水,废钢, 铁合金 |
发展历程
早在1856年英国人贝斯麦就发明了底吹酸性转炉炼钢法,这种方法是近代炼钢法的开端,它为人类生产了大量廉价钢,促进了欧洲的工业革命。但由于此法不能去除硫和磷,因而其发展受到了限制。1879年出现了托马斯底吹碱性转炉炼钢法,它使用带有碱性炉衬的转炉来处理高磷生铁。虽然转炉法可以大量生产钢,但它对生铁成分有着较严格的要求,而且一般不能多用废钢。随着工业的进一步发展,废钢越来越多。
平炉炼钢法对原料的要求不那么严格,容量大,生产的品种多,所以不到20年它就成为世界上主要的炼钢方法。
20世纪50年代,在世界钢产量中,约85%是平炉炼出来的。1952年在奥地利出现纯氧顶吹转炉,它解决了钢中氮和其他有害杂质的含量问题,使质量接近平炉钢,同时减少了随废气(当用普通空气吹炼时,空气含79 %无用的氮)损失的热量,可以吹炼温度较低的平炉生铁,因而节省了高炉的焦炭耗量,且能使用更多的废钢。由于转炉炼钢速度快(炼一炉钢约10min,而平炉则需7h),负能炼钢,节约能源,故转炉炼钢成为当代炼钢的主流。
其实130年以前贝斯麦发明底吹空气炼钢法时,就提出了用氧气炼钢的设想,但受当时条件的限制没能实现。直到20世纪50年代初奥地利的Voest Alpine公司才将氧气炼钢用于工业生产,从而诞生了氧气顶吹转炉,亦称LD转炉。顶吹转炉问世后,其发展速度非常快,到1968年出现氧气底吹法时,全世界顶吹法产钢能力已达2.6亿吨,占绝对垄断地位。1970年后,由于发明了用碳氢化合物保护的双层套管式底吹氧枪而出现了底吹法,各种类型的底吹法转炉(如OBM,Q-BOP,LSW等)在实际生产中显示出许多优于顶吹转炉之处,使一直居于首位的顶吹法受到挑战和冲击。
顶吹法的特点决定了它具有渣中含铁高,钢水含氧高,废气铁尘损失大和冶炼超低碳钢困难等缺点,而底吹法则在很大程度上能克服这些缺点。但由于底吹法用碳氢化合物冷却喷嘴,钢水含氢量偏高,需在停吹后喷吹惰性气体进行清洗。基于以上两种方法在冶金学上显现出的明显差别,故在20世纪70年代以后,国外许多国家着手研究结合两种方法优点的顶底复吹冶炼法。继奥地利人Dr.Eduard等于1973年研究转炉顶底复吹炼钢之后,世界各国普遍开展了转炉复吹的研究工作,出现了各种类型的复吹转炉,到20世纪80年代初开始正式用于生产。由于它比顶吹和底吹法都更优越,加上转炉复吹现场改造比较容易,使之几年时间就在全世界范围得到普遍应用,有的国家(如日本)已基本上淘汰了单纯的顶吹转炉。
传统的转炉炼钢过程是将高炉来的铁水经混铁炉混匀后兑入转炉,并按一定比例装入废钢,然后降下水冷氧枪以一定的供氧、枪位和造渣制度吹氧冶炼。当达到吹炼终点时,提枪倒炉,测温和取样化验成分,如钢水温度和成分达到目标值范围就出钢。否则,降下氧枪进行再吹。在出钢过程中,向钢包中加入脱氧剂和铁合金进行脱氧、合金化。然后,钢水送模铸场或连铸车间铸锭。
随着用户对钢材性能和质量的要求越来越高,钢材的应用范围越来越广,同时钢铁生产企业也对提高产品产量和质量,扩大品种,节约能源和降低成本越来越重视。在这种情况下,转炉生产工艺流程发生了很大变化。铁水预处理、复吹转炉、炉外精炼、连铸技术的发展,打破了传统的转炉炼钢模式。已由单纯用转炉冶炼发展为铁水预处理——复吹转炉吹炼——炉外精炼——连铸这一新的工艺流程。这一流程以设备大型化、现代化和连续化为特点。氧气转炉已由原来的主导地位变为新流程的一个环节,主要承担钢水脱碳和升温的任务了。
工艺流程
氧气顶吹转炉炼钢设备工艺,如图4所示。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后,把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时,生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥,等等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。
我国转炉
1951年碱性空气侧吹转炉炼钢法首先在我国唐山钢厂试验成功,并于1952年投入工业生产。1954年开始开展小型氧气顶吹转炉炼钢的试验研究工作,1962年将首钢试验厂空气侧吹转炉改建成3t氧气顶吹转炉,开始了工业性试验。在试验取得成功的基础上,我国第一个氧气顶吹转炉炼钢车间(2×30t)在首钢建成,于1964年12月26日投入生产。以后,又在唐山、上海、杭州等地改建了一批3.5~5t的小型氧气顶吹转炉。1966年上钢一厂将原有的一个空气侧吹转炉炼钢车间,改建成3座30t的氧气顶吹转炉炼钢车间,并首次采用了先进的烟气净化回收系统,于当年8月投入生产,还建设了弧形连铸机与之相配套,试验和扩大了氧气顶吹转炉炼钢的品种。这些都为我国日后氧气顶吹转炉炼钢技术的发展提供了宝贵经验。此后,我国原有的一些空气侧吹转炉车间逐渐改建成中小型氧气顶吹炼钢车间,并新建了一批中、大型氧气顶吹转炉车间。小型顶吹转炉有天津钢厂20t转炉、济南钢厂13t转炉、邯郸钢厂15t转炉、太原钢铁公司引进的50t转炉、包头钢铁公司50t转炉、武钢50t转炉、马鞍山钢厂50t转炉等;中型的有鞍钢150t和180t转炉、攀枝花钢铁公司120t转炉、本溪钢铁公司120t转炉等;20世纪80年代宝钢从日本引进建成具70年代末技术水平的300t大型转炉3座、首钢购入二手设备建成210t转炉车间;90年代宝钢又建成250t转炉车间,武钢引进250转炉,唐钢建成150转炉车间,重钢和首钢又建成80t转炉炼钢车间;许多平炉车间改建成氧气顶吹转炉车间等。到1998年我国氧气顶吹转炉共有221座,其中100t以下的转炉有188座,(50~90t的转炉有25座),100-200t的转炉有23座,200t以上的转炉有10座,最大公称吨位为300t,顶吹转炉钢占年总钢产量的82.67%。
炼钢原料
品种质量
氧气顶吹转炉炼钢钢的品种和质量
钢中气体和夹杂物是评价钢的冶金质量的主要指标。氧气顶吹转炉炼钢反应速率快,沸腾激烈,所以钢中H、N、O含量较低,[H]为(3~5)×10-4%,[N]为(20~40)×10-4%,低碳钢[O]为0.06%~0.10%。夹杂物和脱氧及凝固操作有关。影响顶吹转炉钢含氮量的重要因素是氧气纯度,由表4数据可以看出。所以用于转炉炼钢的氧气应该是99%以上的纯氧。
低碳钢是转炉炼钢的主要产品。由于转炉脱碳快,钢中气体含量低,所以钢的塑性和低温塑性好,有良好的深冲性和焊接性能。用转炉钢制造热轧薄板、冷轧薄板、镀锌板、汽车板、冷弯型钢、低碳软钢丝等,都具有良好的性能。
转炉冶炼中、高碳钢虽然有一些困难,但也能保证钢的质量。转炉钢制造的各种结构钢、轴承钢、硬钢丝等都已广泛使用。冶炼高碳钢的困难是拉碳和脱磷。在C>O.2%时靠经验拉碳很难控制准确,如果有副枪可借副枪控制,没有副枪时需要炉前快速分析,这就耽误了时间。高碳钢终点(FeO)低,脱磷时间短,因此需要采用双渣操作,即在脱碳期开始时放掉初期渣,把前期进入渣中的磷放走,然而双渣操作损失大量热量和渣中的铁,没有特殊必要不宜采用。增碳法是冶炼中、高碳钢的另一种操作法,这时吹炼操作和低碳钢一样,只是在钢包内用增碳剂增碳,使含碳量达到丘冈绅的要求。增碳剂为焦炭,石油焦等。中碳钢的增碳量小,容易完成。高碳钢增碳要很好控制,但轨钢、硬线等用增碳法冶炼可以保证质量合乎要求。
转炉冶炼低合金钢没有特殊困难。冶炼合金钢时,因为合金化需要加入钢包的铁合金数量大。会降低钢水温度,而过分提高出钢温度又使脱磷不利。所以冶炼合金钢应与炉外精炼相结合.用钢包炉完成合金化。另外,随着对钢的成分的控制要求不断严格,为减少钢性能的波动,要求成分范围越窄越好。这也需要在钢包精炼时进行合金成分微调的操作。
顶吹转炉冶炼超低碳钢(C<0.03%)尚有困难。首先因为在临界含碳量以下,脱碳速率下降,熔池搅拌减弱,加强供氧只能促使铁氧化而不能使碳去除。其次,[%C][%O]=0.0025,当[%C]=0.01时,[%O]=0.25,已经是[0]的饱和浓度,也就是说0.01%C是脱碳的理论极限。如果要进一步脱碳,必须降低气相的CO分压,这需要采用炉外精炼的方法来完成。
主要技术经济指标以150~300t转炉为例,主要技术经济指标如下:
展开表格
科研方向
世界转炉炼钢趋势
提高钢水洁净度,即大大降低吹炼终点时的各种夹杂物含量,要求S低于0.005%;P低于0.005%,N低于20ppm。提高化学成分及温度给定范围的命中精度,为此采用复合吹炼、对熔池进行高水平搅拌并采用现代检测手段及控制模型。减少补吹炉次比例,降低吨钢耐材消耗。
铁水预处理对改进转炉操作指标及提高钢的质量有着十分重要的作用。美国及西欧各国铁水预处理只限于脱硫,而日本铁水预处理则包括脱硫、脱硅及脱磷。例如1989年日本经预处理的铁水比例为:NKK公司京滨厂为55%,新日铁君津厂为74%,神户厂为85%,川崎千叶厂为90%。
日本所有转炉钢厂,美国、西欧各国的几十家钢厂以及其它国家的所有新建钢厂,在转炉上都装有检测用的副枪,在预定的吹炼时间结束前的几分钟内正确使用此枪可保证极高的含碳量及钢水温度命中率,使90%-95%的炉次都能在停吹后立即出钢,即无需再检验化学成分,当然也就无需补吹。此外,这也使产量提高,使补衬磨损大大减少。
复合吹炼能促进各项冶炼参数稳定,因而在许多国家得到推广。80年代初期诞生于卢森堡和法国的LBE炼钢法,除原型方案外,相继演化出一系列派生工艺,有20多种名称,例如:STB、LD—KC、BAP、TBM、LD—OTB、LD—CB、K—BOP、K—OBM、LET等。无论是LBE原型,还是各派生工艺,实践证明它们有其各自的优势。LBE、LD—KC、BAP、TBM这些方法实际无差别—都是炉顶吹氧及经炉底喷人氩气。还有一些方法是从炉底输入一氧化碳、二氧化碳、氧气。各种复合吹炼工艺可用以下数字(转炉座数)说明其推广情况。1983年63座,1988年140座,1990年228座。奥地利、澳大利亚、比利时、意大利、加拿大、卢森堡、葡萄牙、法国、瑞士、韩国等这些国家全部或几乎全部转炉都采用复合吹炼。
日本采用所谓的吹洗法,即在炉顶吹氧结束时,接着从炉底吹氩,使钢水中碳含量达到0.01%。这对汽车用钢、薄板用钢及电工用钢的冶炼尤为重要。
值得注意的是,日本正在开发复合吹炼条件下调控冶炼过程用的新方法及新设备。其中有利用炉顶氧枪里的光缆随吹炼进程连续监测钢中锰含量;利用装于炉底的光纤传感器以及利用所排气体信息连续监测钢水温度;并在进行喷溅预测及预防方面的研究。
神户制钢公司开发的喷溅预测是以顶吹氧枪悬吊系统的检测为基础。日本NKK公司京滨厂是通过对出钢口的监测来减轻喷溅。当熔渣猛烈上浮时,视频信号发出往炉内添煤或石灰石的指令。比较好用的材料(从平息熔池的时间来说)是煤。
转炉炉衬寿命是极为重要的课题。日本、美国及西欧各国资料分析表明,影响炉衬磨损的各项冶炼参数,例如后期渣氧化度、碱度及吹炼终点时钢水温度,各国钢厂之间并无大的差别。只有通过用副枪检测方可将对炉衬最为有害的后吹时间从10-15min减少到1-3min及消除补吹。
优化转炉炼钢工艺
转炉炼钢工艺各项指标取决于铁水的化学成分,而对铁水的主要要求是含硫量低(低于0.03%),相应要求较高含硅(0.7%-0.9%)及具有优化造渣所需的锰量(0.8%-1.0%)。
炼铁炼钢各阶段脱硫过程理化规律及动力特性分析表明,在动力方面,在铁水中比在钢水中更容易保证脱硫反应,因为在含碳量较高及氧化度较低条件下硫具有更高的活性。然而在高炉炼铁当中很难脱硫,因为在高炉一系列复杂的氧化—还原反应中,深脱硫的各种热动力条件的能量不可避免地会增高硅含量并因此导致石灰及焦炭消耗的增加及产量的下降。因此,生产低硫铁需周密策划工艺,采用含硫最少的炉料及制备高碱度混成渣。
在转炉吹炼中脱硫也无效果,因为钢渣系中达不到平衡状态,渣与钢间的硫分配系数因熔池氧化度高及碳含量低,仅为2-7。如此低的硫分配系数使得难以在转炉冶炼中实现深脱硫,并导致炼钢生产在技术及经济上的巨大消耗。无论是在高炉炼铁,还是在转炉炼钢当中都保证不了金属有效脱硫所需的热动力条件,因此进行高炉炼铁及转炉炼钢过程中的深脱硫研究,在技术及经济上都是不可取的。而合理的作法是将脱硫过程从高炉及转炉中分离出来。这就可简化烧结—高炉—转炉生产流程降低生产成本。将脱硫从高炉及转炉中分离出来,使高炉炉外脱硫成为设计大型联合钢厂和重要工艺环节,在冶炼低硅铁的同时不必再为保证转炉中的精炼进行代价很高的高炉炉外脱硅。铁水原始硅含量低还可降低锰含量。在氧气转炉炼钢中锰的作用非常重要,它决定着及早造渣所需的条件并对出钢前终点钢水氧化度起调节作用,长期实践证明,需设法使铁水中锰保持0.8%-1.0%的水平,因而在烧结混合料中必需补充锰,而这就提高了成本。烧结—高炉—转炉各流程锰平衡分析表明,上述锰在高炉里还原、然后在转炉里氧化导致锰原料及锰本身不可弥补的巨大损失,而且还给各生产流程操作增加很多麻烦。在碳含量很低(0.05%-0.07%)条件下停止吹炼时,氧化度的影响如此之大,以致会把锰的最终含量定在极窄范围内,实际上已很少再与铁水原始锰含量相关。在这种条件下,尽管铁水原始锰含量达0.5%-1.2%,但钢的最终锰含量实际上都一样(0.07%-0.11%)。因此在当代转炉炼钢工艺条件下(各炉次都有过吹操作),没必要在烧结混合料中使用含锰原料来提高铁水原始锰含量,更合理的作法是冶炼低锰铁。同时为节约低锰铁在转炉炼钢中脱氧的用量,研究直接采用锰矿石的效果具有重要意义。对众多炉次进行工业平衡计算所得工艺指标的对比表明,冶炼铁水不添加锰矿石,而在转炉炼钢中添加锰矿石,与用含锰1.13%的铁水炼钢,这两种炼钢法相比,前者每吨生铁可节省锰矿石15.3kg.此外,还可减少锰铁1.3kg/t钢、石灰5kg/t,氧气2.17m3/t的耗量,并可大大缩短吹炼时间。
铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷。这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。
根据这一原则开发出转炉炼钢新工艺,即在转炉炼钢本身中多次(3-5次)利用后期渣(循环造渣)。采用这样的工艺可降低石灰消耗及渣中铁损。及早造就高碱度氧化渣,及使硅、锰含量低可提供钢水深脱磷所需的强劲动力。