等周问题(1901年赫尔维茨提出的概念)
VLoG
次浏览
更新时间:2023-05-22
基本信息
中文名 | 等周问题 |
外文名 | isoperimetric problem |
提出者 | 赫尔维茨 |
应用学科 | 数学 |
提出时间 | 1901 |
使用领域范围 | 物理,数学 |
收起
简介
等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。它可以以不等式表达:
P若为封闭曲线的周界长,A为曲线所包围的区域面积,
虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等。
在物理中,等周问题和跟所谓的最小作用量原理有关。一个直观的表现就是水珠的形状。在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体。这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值。根据等周定理,最小值是在水珠形状为球状时达到。
详解
等周问题
等周问题
平面上的等周问题是等周问题最经典的形式,它的出现可以追溯到很早以前。这个问题可以被表述为:在平面上所有周长一定的封闭曲线中,是否有一个围成的面积最大?如果有的话,是什么形状?另一种等价的表述是:当平面上的封闭曲线围成的面积一定时,怎样的曲线周长最小?
虽然圆看似是问题的表面答案,但证明此事实其实不易。首个接近答案的步骤出现在1838年——雅各·史坦纳以几何方法证明若答案存在,答案必然是圆形。不久之后他的证明被其他数学家完善。
其方法包括证明了不完全凸的封闭曲线的话,能以“翻折”凹的部分以成为凸的图形,以增加面积;不完全对称的封闭曲线能以倾斜来取得更多的面积。圆,是完全凸和对称的形状。可是这些并不足以作为等周定理的严格证明。
2012年,潘忆思利用不等式给出了一个十分简单初等证明。论文名称《不等式与等周问题》。