怎样解题(2002年G 波利亚创作的图书)
VLoG
次浏览
更新时间:2023-05-22
怎样解题
2002年G 波利亚创作的图书
内容简介
“怎样解题表”就是《怎样解题》一书的精华,该表被波利亚排在该书的正文之前,并且在书中再三提到该表。实际上,该书就是“怎样解题表”的详细解释。波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。如果能在平时的做题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”
第一,必须弄清问题
弄清问题
未知数是什么?
已知数据(指已知数、已知图形和已知事项等的统称)是什么?
条件是什么?
满足条件是否可能?
要确定未知数,条件是否充分?
或者它是否不充分?或者是多余的?或者是矛盾的?
画张图。
引入适当的符号。
把条件的各个部分分开。能否把它们写下来?
第二,找出已知数与求知数之间的联系。
如果找不出直接的联系,可能不得不考虑辅助问题。
应该最终得出一个求解的计划。
拟定计划
以前见过它吗?是否见过相同的问题而形式稍有不同?
是否知道与此有关的问题?是否知道一个可能用得上的定理?
看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。
这里有一个与现在的问题有关,且早已解决的问题,能应用它吗?
能不能利用它?能利用它的结果吗?为了能利用它,是否应该引入某些辅助元素?
能不能重新叙述这个问题?能不能用不同的方法重新叙述它?
回到定义去。
如果不能解决所提出的问题,可先解决一个与此有关的问题。能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知能确定到什么程度?它会怎样变化?能不能从已知数据导出某些有用的东西?能不能想出适合于确定未知数的其它数据?如果需要的话,能不能改变未知数和数据,或者二者都改变,以使新未知数和新数据彼此更接近?
是否利用了所有的已知数据?是否利用了整个条件?是否考虑了包含在问题中的所有必要的概念?
第三,实行你的计划。
实现计划
实现求解计划,检验每一步骤。
能否清楚地看出这一步是正确的?能否证明这一步是正确的?
第四,验算所得到的解。
回顾反思
能否检验这个论证?能否用别的方法导出这个结果?能否一下子看出它来?
能不能把这结果或方法用于其它的问题?
《怎样解题》表是波利亚在分解解题的思维过程得到的,看似很平常的解题步骤或方法,其实却已包含几代人的智慧结晶和经验总结。在这张包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程的解题表中,对第二步即“拟定计划”的分析是最为引人入胜的。把寻找并发现解法的思维过程分解为五条建议和二十三个具有启发性的问题,它们就好比是寻找和发现解法的思维过程进行分解,对解题的思维过程看得见,摸得着,易于操作。波利亚推崇探索法,现代探索法力求了解解题过程,特别是解题过程中典型有用的智力活动。《怎样解题》这本书就是实现这种计划的初步尝试,“怎样解题表”实质上就是试图诱发灵感的“智力活动表”。波利亚的《怎样解题》表的精髓是启发联想。联想什么?怎样联想?看一看表中所提出的建议和启发性问题吧。“以前见过它吗?是否见过相同的问题而形式稍有不同?是否知道与此有关的问题?是否知道一个可能用得上的定理?……”波利亚说在写这些东西时,脑子里重现了过去在研究数学时解决问题的过程,实际上是解决和研究问题时的思维过程的总结。这正是数学家在研究数学,特别是研究解题方法时的优势所在,绝非“纸上谈兵”。回过头来想一想,我们会发现自己在解决问题时的确或多或少地经历了这样一个过程。
在解题时,为了找到解法,实际上也思考过表中的某些问题,只不过不自觉,没有意识到这些问题罢了。在解决实际问题时,可能又忽略许多解决问题的方法和细节。因此需要控制自己的思路,用顽强的意志不断地模仿解决问题的步骤和方法,争取达到灵活运用和创造性地解决问题的程度。按波利亚提出的这些问题和建议去寻找解法,在解题的过程中,必将使自己的思维受到良好的训练,久而久之,不仅提高了解题能力,而且养成了有益的思维习惯。
作者简介
G 波利亚 ( 男) (George Polya,1887—1985),著名美国数学家和数学教育家。生于匈牙利布达佩斯。1912年获布达佩斯大学博士学位。1914年至1940年在瑞士苏黎世工业大学任数学助理教授、副教授和教授,1928年后任数学系主任。1940年移居美国,历任布朗大学和斯坦福大学的教授。1976年当选美国国家科学院院士。还是匈牙利科学院、法兰西科学院、比利时布鲁塞尔国际哲学科学院和美国艺术和科学学院的院士。其数学研究涉及复变函数、概率论、数论、数学分析、组合数学等众多领域。1937年提出的波利亚计数定理是组合数学的重要工具。长期从事数学教学,对数学思维的一般规律有深入的研究,在这方面的名著有《怎样解题》、《数学的发现》、《数学与猜想》等,它们被译成多种文字,广为流传。
目录
第一部分 在教室里
目的
1.帮助学生
2.问题,建议,思维活动
3.普遍性
4.常识
5.教师和学生,模仿和实践
主要部分,主要问题
6.四个阶段
7.理解题目
8.例子
9.拟订方案
10.例子
11.执行方案
12.例子
13.回顾
14.例子
15.不同的方法
16.教师提问的方法
17.好问题与坏问题
进一步的例子
18.一道作图题
19.一道证明题
20.一道速率题
第二部分 怎样解题
一段对话
第三部分 探索法小词典
类比
辅助元素
辅助题目
出色的念头
你能检验这个结果吗?
你能以不同的方式推导这个结果吗?
你能应用这个结果吗?
执行
条件
矛盾
推论
你能从已知数据中得出一些有用的东西吗?
你能重新叙述这道题目吗?
分解和重组
定义
笛卡儿
决心、希望、成功
诊断
你用到所有的已知数据了吗?
你知道一道与它有关的题目吗?
画一张图
检验你的猜想
图形
普遍化
你以前见过它吗?
这里有一道题目和你的题目有关
而且以前解过
探索法
探索式论证
如果你不能解所提的题目
归纳与数学归纳
创造者悖论
条件有可能满足吗?
引理
观察未知量
现代探索法
符号
拘泥与变通
实际题目
求解题、证明题
进展与成绩
谜语
归谬法与间接证明
多余
常规题目
发现的规则
格式的规则
教学的规则
将条件的不同部分分开
建立方程
进展的标志,
特殊化
潜意识活动
对称性
新旧术语
量纲检验
未来的数学家
聪明的解题者
聪明的读者
传统的数学教授
变化题目
未知量是什么?
为什么证明?
谚语的智慧
倒着干
第四部分 题目、提示、解答
题目
提示
解答
注释