声呐(水下探测和通讯任务的电子设备)
VLoG
次浏览
更新时间:2023-05-23
声呐
本词条是多义词,共2个义项
水下探测和通讯任务的电子设备
声呐也作声纳,是英文缩写“SONAR”的中文音译(中国科技名词审定委员会公布的规范译名为 声呐),其全称为:Sound Navigation And Ranging(声音导航与测距),是利用声波在水中的传播和反射特性,通过电声转换和信息处理进行导航和测距的技术,也指利用这种技术对水下目标进行探测(存在、位置、性质、运动方向等)和通讯的电子设备,是水声学中应用最广泛、最重要的一种装置,有主动式和被动式两种类型。
基本信息
中文名 | 声呐 |
外文名 | sonar, sound navigation and ranging |
别名 | 声纳 声音导航与测距 |
相关学科 | 船舶工程 海洋科学技术 |
释义与简介
作为一种声学探测设备,主动式声呐是在英国首先投入使用的,不过英国人把这种设备称为"ASDIC"(潜艇探测器),美国人称其为"SONAR",后来英国人也接受了此叫法。
由于电磁波在水中衰减的速率非常的高,无法做为侦测的讯号来源,以声波探测水面下的人造物体成为运用最广泛的手段。无论是潜艇或者是水面船只,都利用这项技术的衍生系统,探测水底下的物体,或者是以其作为导航的依据。
声呐
声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。
和许多科学技术的发展一样,社会的需要和科技的进步促进了声呐技术的发展。
俄罗斯海军专门将一艘核子K-403号潜艇改成声呐测试用艇,可见重视程度。
工作的原理
声呐模式
”的意思,作为动词就有“探测”的意思,可见声与探测关系之紧密。
在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。
结构与分类
分类
声呐的分类可按其工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声呐。例如按工作方式可分为主动声呐和被动声呐;按装备对象可分为水面舰艇声呐、潜艇声呐、航空声呐、便携式声呐和海岸声呐等。
主动声呐:主动声呐技术是指声呐主动发射声波“照射”目标,而后接收水中目标反射的回波时间,以及回波参数以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射声波,然后接收回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇;
被动声呐:被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位和距离。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。
安装
传统上潜艇安装声呐的主要位置是在最前端的位置,由于现代潜艇非常依赖被动声呐的探测效果,巨大的收音装置不仅仅让潜艇的直径水涨船高,原先在这个位置上的鱼雷管也得乖乖让出位置而退到两旁去。
其他安装在潜艇上的声呐型态还包括安装在艇身其他位置的被动声呐听音装置,利用不同位置收到的同一讯号,经过电脑处理和运算之后,就可以迅速的进行粗浅的定位,对于艇身较大的潜艇来说比较有利,因为测量的基线较长,准确度较高。另外一种声呐称为“拖曳声呐”,因为这种声呐装置在使用时,以缆线与潜艇连接,声呐的本体则远远的拖在潜艇的后面进行探测,拖曳声呐的使用大幅强化潜艇对于全方位与不同深度的侦测能力,尤其是潜艇的尾端。这是因为潜艇的尾端同时也是动力输出的部分,由于水流的声音的干扰,位于前方的声呐无法听到这个区域的讯号而形成一个盲区。使用拖曳声呐之后就能够消除这个盲区,找出躲在这个区域的目标。
影响因素
声呐
比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声呐的作用距离和测量精度。现代声呐根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声呐探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声呐作用距离就越近,反之则越远;目标反射本领越大,被对方主动声呐发现的距离就越远;目标辐射噪声强度越大,被对方被动声呐发现的距离就越远。
历史沿革
声呐
在1915年,法国物理学家Paul Langevin与俄国电气工程师Constantin Chilowski合作发明了第一部用于侦测潜艇的主动式声呐设备。尽管后来压电式变换器取代了他们一开始使用的静电变换器,但他们的工作成果仍然影响了未来的声呐设计。
1916年,加拿大物理学家Robert Boyle承揽下一个属于英国发明研究协会的声呐项目,Robert Boyle在1917年年中制作出了一个用于测试的原始型号主动声呐,由于该项目很快就划归ASDIC,(反潜/盟军潜艇侦测调查委员会)管辖,此种主动声呐亦被称英国人称为“ASDIC”,为区别于SONAR的音译“声呐”,将ASDIC翻译为“潜艇探测器”。
1918年,英国和美国都生产出了成品。1920年英国在皇家海军HMS Antrim号上测试了他们仍称为“ASDIC”的声呐设备,1922年开始投产,1923年第六驱逐舰支队装备了拥有ASDIC的舰艇。
1931年美国研究出了类似的装置,称为SONAR(声呐)。
生物声纳
声呐并非人类的专利,不少动物都有它们自己的“声呐”。蝙蝠就用喉头发射每秒10-20次的超声脉冲而用耳朵接收其回波,借助这种“主动声呐”它可以探查到很细小的昆虫及0.1mm粗细的金属丝障碍物。而飞蛾等昆虫也具有“被动声呐”,能清晰地听到40m以外的蝙蝠超声,因而往往得以逃避攻击。然而有的蝙蝠能使用超出昆虫侦听范围的高频超声或低频超声,从而使捕捉昆虫的命中率仍然很高。看来,动物也和人类一样进行着“声呐战”!海豚和鲸等海洋哺乳动物则拥有“水下声呐”,它们能产生一种十分确定的讯号探寻食物和相互通迅。
海豚声呐的灵敏度很高,能发现几米以外直径0.2mm的金属丝和直径lmm的尼龙绳,能区别开只相差200卜s时间的两个信号,能发现几百米外的鱼群,能遮住眼睛在插满竹竿的水池子中灵活迅速地穿行而不会碰到竹竿;海豚声呐的“目标识别”能力很强,不但能识别不同的鱼类,区分开黄铜、铝、电木、塑料等不同的物质材料,还能区分开自己发声的回波和人们录下它的声音而重放的声波;海豚声呐的抗干扰能力也是惊人的,如果有噪声干扰,它会提高叫声的强度盖过噪声,以使自己的判断不受影响;而且,海豚声呐还具有感情表达能力,已经证实海豚是一种有“语言”的动物,它们的“交谈”正是通过其声呐系统。尤其是仅存于世的四种淡水豚中最珍贵的一种-我国长江中下游的白鳍豚,它的声呐系统“分工”明确,有为定位用的,有为通讯用的,有为报警用的,并有通过调频来调制位相的特殊功能。
终身在极度黑暗的大洋深处生活的动物是不得不采用声呐等各种手段来搜寻猎物和防避攻击的,它们的声呐的性能是人类现代技术所远不能及的。解开这些动物声呐的谜,一直是现代声呐技术的重要研究课题。而我们人类发明的“声呐”就是通过鲸和海豚的原理发明的。
应用
军事
水声技术是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪,进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。随着现代声纳技术的发展和进步,新一代声纳具有更先进的探测性能和更远的探测距离,一些高科技声纳还具有相当高的分辨率,能够识别蛙人和可疑水下航体。
海洋渔业
探鱼仪是一种可用于发现鱼群的动向、鱼群所在地点、范围的声纳系统,利用它可以大大提高捕鱼的产量和效率;助鱼声纳设备可用于计数、诱鱼、捕鱼、或者跟踪尾随某条鱼等。海水养殖场已利用声学屏障防止鲨鱼的入侵,以及阻止龙虾鱼类的外逃。
水声通信
相关事件
2009年6月16日,中国外交部发言人秦刚在记者会上表示,中国政府6月12日注意到了有关中国潜艇同美国“麦凯恩”号驱逐舰拖曳声呐6月11日在菲律宾苏比克附近意外相撞的报道,中国有潜艇在南海进行正常的训练活动,目前没有接到发生所述情况的报告。与此同时,美国防部海军发言人6月15日发表声明称,不能确定声呐被何物撞坏,更不能确定是被中国潜艇撞坏。
分析人士认为,美国军方这一次如此低调可能是确实未能确定是和中国潜艇相撞。其次,目前朝核问题让美国焦头烂额,在这个节骨眼上,美国迫切需要中国的支持。
“麦凯恩”号已抵达日本佐世保港进行检修。“麦凯恩”号的拖曳声呐集成了探测、分类和交战等子系统,展开后可长达1700米,造价大约为2000万美元。
发展趋势
冷战结束之后的海战场已进入了信息战时代。声呐的发展也迈向了知识和信息时代,主要表现在以下方面:
继续向低频、大功率、大基阵方向发展。
鉴于声波在海水中的传播特性以及低频大功率与基阵的关系,开发大孔径低频声呐技术是解决远程探潜、进行有效反潜的前提。
向系统性、综合性发展。
舰艇声呐系统将由单项功能的单部声呐逐步发展为由多部声呐组成的收一发分置、多基地、多传感器的综合声呐系统,并进而构成潜艇战和反潜战声知识基作战系统。如美国水面舰艇装备的AN/SQQ一89反潜综合作战系统,它是由舰壳主动声呐、战术拖曳线阵列声呐、舰载直升机搜潜系统和声呐信号处理机、反潜火控系统和声呐状态方式评估系统等组成。该系统于1991年开始装备“阿利伯克”级驱逐舰。
向系列化、模块化、标准化、高可靠性和可维修性发展。
计算机的应用使声呐向智能化方向发展。
用计算机进行声呐波束形成、信号处理、目标跟踪与识别、系统控制、性能监测、故障检测等。可大大提高声呐的性能。随着第五代计算机(即人工智能计算机)的问世,声呐也正在向智能化方向发展。神经网络的研究已取得令人瞩目的进展,它与计算机技术和信号处理技术相结合,使声呐智能化成为可能。
由均匀传播介质、各向同性噪声场和单个平面波信号条件下的声呐设计发展为开发和利用非平面波、非高斯、非平稳信号和噪声实际特性的环境处理的声呐设计,以获取和占有更多的信息和知识,大幅度提高声呐检测距离、定位精度、识别正确率和目标运动分析/跟踪能力。
支撑技术
被动测距
被动测距声呐是从70年代初开始研制的。从理论上讲,只要声呐基阵的孔径足够大,用三点阵测距是没有问题的。关键是把三个基阵的声中心的相对延时精确测量出来。可以证明,被动测距的相对误差等于测延时的相对误差。
合成孔径技术
合成孔径声呐的研制近十年来受到很大的重视。已经报道有相当高性能的样机问世。合成孔径作为一种技术在雷达上成功应用已近40几年了,但在声呐上迟迟得不到实质性的进展,主要是由于声传播的海洋介质比无线电传播的大气介质复杂很多,另外声呐平台运动速度与声传播速度之比是1: 106,所以合成孔径声呐的运动补偿、成像远比合成孔径雷达复杂。合成孔径声呐的初步研究结果是令人振奋的,它大约可以在400m的距离上达10cm的分辨力,在以前是无法达到的。美国DTI(Dynamic Technology Inc) 研制的样机在Washington湖作试验时,甚至得到了一架早先沉没湖底的飞机残骸的“像”。合成孔径技术还用于高分辨力的波束成形,这在安静型潜艇辐射噪声中可以获得应用,利用这种技术可以把潜艇作为一个体积元,确定对辐射噪声最有贡献分量的部位。
数据融合
由于声呐系统的集成度越来越高,数据量越来越大,单靠声呐员处理多平台、多传感器的信息就显得很不够,所以数据融合的技术自然而然地受到重视,虽然还不能完全做到全自动判别,但至少为辅助决策提供了强有力的工具。数据融合从所处理的信息层次来分,可以分为三级,即基无级,特征级和决策级。研究课题的级别越到底层就越复杂。现在大多数的研究工作还是围绕决策级展开的。数据融合中的一个基本定理,保证了声呐系统进行数据融合的必要性,这个定理是说,无论是独立观测资料还是相关观测资料,最佳的线性数据融合所带来的误差不会大于任何个别观测资料所带来的误差。
目标识别与水下快速运动目标轨迹提取
数字式声呐的基本功能是测向和测距,目标识别的功能通常由声呐员通过鉴别目标辐射噪声来完成。随着声呐技术的发展,国外的一些声纳已具备目标识别功能,甚至专门配置鱼雷报警声呐。
声呐危害
美国自然资源保护委员会(NRDC)的一项报告显示,军事声呐等不断加剧的海洋噪声正影响着海豚、鲸的生活,因为这些动物必须依赖声音进行交配、觅食以及躲避天敌。报告称,海洋噪声轻则影响海洋生物的长期行为,重则导致它们听力丧失甚至死亡。
NRDC 的研究结果认为,科学界对于军用声呐可以伤害、杀死并大范围破坏海洋哺乳动物这一点上已经没有争议。美国环境和鲸保护组织也多年致力于保护海洋哺乳动物免受美军声呐影响的研究,结果显示声呐与鲸的死亡率之间的关联很紧密。另外,声呐也降低了大比目鱼和其他鱼类捕食的成功率,还影响了鱼类的繁殖率和巨型海龟的行为等。一些鱼类的内耳也受到了严重的伤害,这直接威胁着它们的生存。
由中频声呐试验导致的鲸大量搁浅及死亡事件不断发生:1996 年 5 月,美军在北约的一次演习中,有 14 头剑吻鲸在希腊海岸搁浅;2000 年 3 月,美军在百慕大海域再度进声呐实验,由于军舰配备的声呐影响,3 个种类共 16 头鲸搁浅在长达 150 米的海岸线上,其中 6 头死亡——多个物种成群搁浅是非常罕见的,科学家发现冲滩搁浅的突吻鲸眼睛、颅部出血,肺爆裂,自此美军接受了声呐对海洋哺乳动物行为有影响的观点;2002 年 7 月,66 头领航鲸在马萨诸塞州的海边集体自杀,原因同样与声呐实验有关;2004 年 7 月,在环太平洋军事演习中,美军声呐测试开始后不久,夏威夷沿岸的浅水中就有 200 头鲸鱼搁浅,其中 1 头鲸鱼仔死亡;2005 年初,由于美军声呐试验,37 头鲸搁浅在北卡罗莱纳州的外滩;2009 年 3 月,美国“无瑕号”在南海被中国渔政人员和渔民拦截并驱赶前,打开声呐“工作”后不久就在“无瑕号”声呐范围内的香港海岸边,出现一条长逾 10 米的成年座头鲸迷航搁浅。
科学家称声呐发射的声波可能干扰鲸和海豚利用自身声呐捕食。海军的声呐还可能惊吓某些鲸类,特别是突吻鲸,促使它们冲出水面造成危险后果。相关政策要求海军当有海洋哺乳动物在附近时要关停声呐并采用其它手段来保护动物。
在这种情况下,一方面海军发射水下声波用于感知水下目标,另一方面,低频主动声呐声波比其他声呐辐射的范围更广,环境保护主义者认为它对海洋哺乳动物有更大的危害。
参考资料
[1]
解读潜艇声呐:多在艇壳贴镶“挤走”鱼雷发射管-中新网[引用日期2022-06-23 12:35:25]
[2]
解读潜艇声呐:多在艇壳贴镶“挤走”鱼雷发射管-中新网[引用日期2022-06-23 12:36:39]
[3]
鲸鱼跃上海岸集体“自杀”凶手是人类?噪音污染海洋里也有[引用日期2022-06-23 12:38:17]
[4]
科学汇 | 潜水艇是如何下潜上浮的?为啥鲸鱼能下潜千米而潜艇不能……[引用日期2022-06-23 12:38:40]
[5]
多国海军研发反声呐系统增强潜艇隐蔽性(图)-中新网[引用日期2022-06-23 12:39:52]
展开