对比温度(对比温度)

概念介绍
不同物质如果具有相同的对比压(压力与临界压力之比)和对比温度(温度与临界温度之比),就是处于对应态这时它们的各种物理性质都具有简单的对应关系。
自然界中的各种物质都存在临界状态,此时其液态的比体积与气态比体积相同。临界状态的状态参数称临界参数,如临界压力、临界比体积、临界温度,分别用
对比参数
(1)对比参数都是无量纲量,它表明物质所处的状态离开其本身临界状态远近的程度。如果两种或几种物质的状态具有相同的对比参数,表明它们离开其各自的临界状态的程度相同,则称这些物质处于对应状态。
(2)在临界状态,任何物质的对比参数都相同,且都等于1。
(3)用对比参数表示的状态方程式称为对应态方程。它的特点是式中不包含反映个别物质特性的常数,它的一般式可写成:
(4)应用对应态定律可以对实际气体热力性质进行近似计算。
对应态原理是一种特别的状态方程,也是预测流体性质最有效的方法之一。为了拓宽对应态原理的应用范围和提高计算精度,研究者引入第三参数而建立的普遍化关系式。
对应态原理
Zc为参数LydersenL等以Zc作为第三参数,将压缩因子表示为
除了以
纯态物质的偏心因子是根据物质的蒸气压定义的。实验发现,纯态流体对比饱和蒸气压
因此,任何流体的ω均可由该流体的临界温度
根据ω的定义,氩、氪、氙这类简单流体的ω=0,而其他流体
Pitzer提出的三参数对应态原理可以表述为:对于所有ω相同的流体,若处在相同的
对于非极性或弱极性的气体,Pitzer普遍化关系式能够提供可靠的结果,误差小于3%;对强极性气体则误差达5%~10%;而对于缔合气体和量子气体,误差较大。
Lee和Kesler推广lPitzer提出的关联方法,并提出了三参数对应态原理的解析表达式:
可以预测,在L-K方程中,研究流体与参考流体的性质越接近,预测结果的准确性和可靠性就越高。因此采用两个非球形参考流体有可能使研究流体与参考流体的性质尽可能接近。
临界状态
定义临界状态是指纯物质的气、液两相平衡共存的极限热力状态。物质的气态和液态平衡共存时的一个边缘状态。在此状态时,饱和液体与饱和蒸气的热力状态参数相同,气液之间的分界面消失,因而没有表面张力,气化潜热为零。处于临界状态的温度、压力和比容,分别称为临界温度、临界压力和临界比容。可用临界点表示。
性质1)任何纯物质都有其确定的临界状态
2)在大于临界压力条件下,等压加热过程不存在汽化段,液体由未饱和态直接变化为过热态
3)在大于临界温度条件下,无论压力多高都不可能使气体液化
4)在临界状态下,可能存在超流动特性
5)在临界状态附近,水及水蒸汽有大比定压热容特性