弗朗西斯水轮机(1849年弗朗西斯发明的水轮机)
弗朗西斯水轮机是指由美国工程师弗朗西斯于1849年发明的一种水轮机。世界上水头最高的混流式水轮机装于奥地利的罗斯亥克电站,其水头为672米,单机功率为58.4兆瓦,于1967年投入运行。功率和尺寸最大的混流式水轮机装于美国的大古力第三电站,其单机功率为700兆瓦,转轮直径约9.75米,水头为87米,转速为85.7转/分,于1978年投入运行。
Francis turbine
水力发电
机械工程
1849年
结构
弗朗西斯水轮机
弗朗西斯水轮机是反击式水轮机的一种,其应用水头范围很广,从20~700m水头均可使用。它结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数。现以右图所示的弗朗西斯水轮机为例来介绍这种水轮机结构。水轮机的进水部件是具有钢板里衬的蜗壳,座环支柱也称固定导叶1,在转轮四周布置着导水机构导叶2。座环支柱具有坚固的上环a和下环b,蜗壳和上下环焊接在一起。导叶轴颈用衬套(钢或尼龙材料)支承在底环3和固定于顶盖4的套筒5上。底环固定于座环的下环上面。顶盖用螺钉6与座环的上环连接。导水的传动机构是由安置在导水叶上轴颈的转臂12,连杆13和控制环14组成。导叶的开度0a(从导叶出口边端到相邻导叶背部的最短距离)的改变是通过导水机构的两个接力器16和控制环连接的推拉杆15传动控制环来实现的。由于弗朗西斯水轮机应用水头较高,导叶承受的弯曲载荷大,因此导叶的相对高度0b与轴流式水轮机比较起来做得短一些,以减小跨度。此外,随着水头增高,相同功率下水轮机的过流量减小,这样有可能减小流道的过流载面。0b一般随水头增加而减小。
导叶和水轮机顶盖4及底环3之间的间隙及相邻导叶在关机时的接合面都会有漏水现象。一般采用橡胶的或金属制成的密封件,可使导水机构关闭时的漏水量最小。在高水头的水轮机中,有时采用专门的管状密封装置,在关机时其内腔充以压缩空气,能使端面完全密封。
转轮是水轮机将水流能量转换为机械能的核心部件。水流通过导水机构进入转轮。转轮由上冠9,下环10和叶片11组成。一般弗朗西斯水轮机有14~19个叶片。叶片、上冠和下环组成坚固的整体钢性结构。转轮上冠与主轴8的下法兰连接。泄水锥18与上冠连接,用于消除水流旋蜗。
转轮密封a19,b19是安置在转轮上冠和下环上的多槽环。水轮机工作时,转轮前后的水流个别为高压与低压,转轮后常形成真空。因此,水轮机工作时有部分水流经过转动与不转动部件之间的间隙无益地漏掉,从而使水轮机效率降低。密封环就是为了减少流量漏损。当水经过密封环空间时,受到突然扩大和缩小的局部水力阻挡,产生水力损失,从而减小流速,使通过缝隙的流量减小。
减压孔联通转轮上腔和转轮下面的低压区,从而减小由推力轴承承受的轴向推力,当有减压孔(图上的20)时,转轮上冠必须设置密封装置。
转轮
转轮是各种型式水轮机将水能转变成机械能的核心部件。转轮也直接决定水轮机过流能力、水力效率、空蚀性能和工况稳定性等工作性能。因此转轮各部分应满足水力设计的型线要求,有足够的强度和刚度,制造的转轮应具备有抗空蚀损坏,耐泥沙磨损的性能。
对于不同的水头,水轮机的形状是不同的,有轴流式,混流式和冲击式等几大类水轮机。划分这几大类水轮机的根本原因是通过转轮的过流量和转轮的强度及刚度等因素。低水头下工作的水轮机可以具有较大的过流量,尽管水轮机气蚀系数大一些,仍旧可以得到合理的安装高程。轴流式水轮机过流量大,转轮叶片承悬臂梁状。由于工作水头不高,强度,刚度也能满足要求。当水头增加,由于气蚀及强度条件不够,轴流式水轮机不适应了,转轮就应该做成有上冠和下环的形状。
弗朗西斯水轮机适用水头范围极广。由于水头和流量的不同,其转轮形状也各不相同。一般说来,水头愈高转轮叶片高度减小,长度增加,水流在转轮中愈趋于幅向流动。随着工作水头降低,转轮叶片变短,高度增加,水流愈趋于轴流方向。
1、转轮上冠
弗朗西斯水轮机
转轮上冠的作用除了支承叶片外,还与下环构成过流通道。上冠形似圆锥体,其上部中间为上冠法兰,此法兰的上面与主轴相连,其下面固定泄水锥,在上冠上固定有均匀分布的叶片。在上冠法兰的外围开有几个减压孔,在其外侧面装有减压装置。上冠流线可以做成直线形和曲线形两种,如右图所示。直线型上冠具有较好的工艺性,但其效率特别是在负荷超过最优工况时低于曲线型上冠。此外采用曲线型上冠可增加转轮流道在出口附近的过水断面积,因而使水轮机的单位流量增加。2、转轮叶片
叶片的作用是直接将水能转换为机械能。叶片断面形状为翼形,转轮叶片数的多少对水力性能和强度有显著的影响,随比转速的不同叶片数在9~21的范围内。
3、转轮下环
转轮下环的作用是增加转轮的强度和刚度并与上冠形成过流通道。
4、泄水锥
泄水锥的作用是引导经叶片流道流出的水流迅速而顺畅的向下渲泄,防止水流相互撞击,以减少水力损失,提高水轮机效率。其外形呈倒锥体。它的结构型式有铸造和钢板焊接两种。里面空心,下面开口,以便排除通过止漏环的漏水及橡胶导轴承的润滑水(有的转轮将泄水控开在泄水锥的外侧),还作为主轴的中心补气和有的转轮的顶盖补气通道之用。
5、止漏装置
弗朗西斯水轮机
止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,如右图所示。6、减压装置
减压装置的作用是减小转轮上的轴向水推力。其形状为环形减压板,分别装在顶盖下面和上冠的上方。
水流经过混流式转轮时会产生轴向力。设计水轮机时,除了要知道水轮机转轮和主轴的重量外,还要知道轴向水推力。
7、转轮的结构型式
由于弗朗西斯水轮机的转轮应用水头和尺寸大小不同,它们的构造型式,制作材料及加工方法均不同。结构型式主要是指上冠,叶片和下环三部分的构造型式,基本上分为整铸转轮,铸焊转轮,组合转轮三种。
工作原理
弗朗西斯水轮机是一种结构简单,制造安装方便,运行可靠,且有较高的效率和较低的空蚀系数的反击式水轮发电机。混流式的过流过部件:蜗壳→导水机构→转轮→尾水管。
在弗朗西斯水轮机中,水流通过蜗壳的导流作用径向流入导水机构,将液体动能转化为静压能,再通过叶片将静压能转换为转子的动能,转轮通过主轴与发电机转子联轴,带动转子旋转并切割发电机定子磁力线圈,利用电磁感应原理在发电机线圈中产生高压电,再经过变压器升压通过输电线路将电力输出到电网中,水流最后轴向流出转轮。
大中型水轮机组一般采用金属蜗壳,其主要作用是为流体的流动起到导向作用,将液体动能转换为静压能。导水机构中的活动导叶倾角可调,其主要作用是调节流量,开关水轮机,调节水流环量。
特点
与轴流转桨式相比,其结构较简单,最高效率也比轴流式的高,但在水头和负荷变化大时,平均效率比轴流转桨式的低,这类水轮机的最高效率有的已超过95%。弗朗西斯水轮机适用的水头范围很宽,为5~700米,但采用最多的是40~300米。
混流式的转轮一般用低碳钢或低合金钢铸件,或者采用铸焊结构。为提高抗汽蚀和抗泥沙磨损性能,可在易气蚀部位堆焊不锈钢,或采用不锈钢叶片,有时也可整个转轮采用不锈钢。采用铸焊结构能降低成本,并使流道尺寸更精确,流道表面更光滑,有利于提高水轮机的效率,还可以分别用不同材料制造叶片、上冠和下环。
应用
弗朗西斯水轮机主要应用于水力发电。水力发电是利用河川、湖泊等位于高处具有位能的水流至低处,将其中所含之位能转换成水轮机之动能,就是利用流水量及落差来转动水涡轮。再藉水轮机为原动机,推动发电机产生电能。因水力发电厂所发出的电力其电压低,要输送到远距离的用户,必须将电压经过变压器提高后,再由架空输电路输送到用户集中区的变电所,再次降低为适合于家庭用户、工厂之用电设备之电压,并由配电线输电到各工厂及家庭用户。
水轮机由古代的水轮、水车演变而来,其工作流程为上游水库中的水经大坝引水管,流入坝体下方发电厂房的蜗壳、导水机构及水轮机转轮中,将势能转化为推动转轮叶片旋转的动能。
利用天然水流为资源。水力发电则系利用筑坝蓄水,昼夜取舍,不尽不竭,既便利又为经济。故近五十年来,世界各国发电,多由火力侧重于水力,都在努力开发水力资源。美国全国发电量最初用火力者在百分之八十以上,至目前为止,水力已占将及半数,由此可见开发水力之重要。而在燃料缺乏之国家,如瑞士、意大利等国,更须大量开发水力发电,以补其缺。
三峡水电站是目前世界最大的水电站,这里安装着世界最大的水轮发电机组。在三峡泄洪坝两侧底部的水电站厂房内,共安装有32台70万千瓦级水轮发电机组;其中左岸厂房14台,右岸厂房12台,右岸地下厂房6台,另外还有2台5万千瓦的电源机组,总装机容量2250万千瓦;相当于20座百万千瓦级核电站,比巴西伊泰普水电站多了850万千瓦。左岸厂房和右岸厂房已建成投产的26台机组,日均发电量3.3亿度,满负荷运行可达4亿度,年发电量近1000亿度,约占全国发电量的33分之一。
三峡水电站安装的32台70万千瓦水轮机组是目前世界上出力最大、尺寸最大的混流式水轮发电机组。大型水轮发电机组是水电站核心设备,也是制造难度最高的顶尖工业产品之一,涉及众多复杂加工技术。长期以来,核心技术一直为少数发达国家所垄断。