光学望远镜(用于天体测量的望远镜)
VLoG
次浏览
更新时间:2023-05-16
光学望远镜
用于天体测量的望远镜
光学望远镜,是用于收集可见光的一种望远镜。
基本信息
中文名 | 光学望远镜 |
电子产品类别 | 反射 |
用途 | 天体测量 |
著名型号 | 胡克望远镜 |
仪器简介
光学望远镜,使用人眼可见光形成恒星和星系的像的望远镜,是用于收集可见光的一种望远镜,并且经由聚焦光线,可以直接放大影像、进行目视观测或者摄影等等,特别是指用于观察夜空,固定在架台上的单筒望远镜,也包括手持的双筒镜和其他用途的望远镜。
种类与用途
著名型号
胡克望远镜
光学望远镜
凯克望远镜
凯克望远镜
超大望远镜
1999年,欧洲南方天文台在智利建造了超大望远镜。它是由4台8米直径望远镜组成的一台等效直径达到16米的光学望远镜。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。它可以在不同波段观测超新星等遥远天体。
昴星团望远镜
日本的昴星团望远镜是目前世界上最大直径的单面反射镜,其直径达8.3米。坐落在夏威夷莫纳克亚山上,建造完成于1999年。据称,仅仅是抛光其超大镜面就花去了7年时间。昴星团望远镜使用了主动光学和自适应光学技术,支持镜面的是261个机械手指,它们可以不断调整镜面的形状以获得最佳成像。
行星搜寻
工作原理
角分辨率
焦长和焦比
集光力
一架望远镜的集光力直接与物镜(透镜或镜片)的直径(即口径)有关。要注意圆面积与半径的平方成正比,因此当望远镜的镜片直径增加三倍时,集光力会增加九倍,口径越大收集的光线越多;另外灵敏度高的影像设备(如CCD)能在较少的光量下获得比较好的影像品质。
研究用
几乎所有用于研究的大型天文望远镜都是反射镜,其原因是:
•在采用透镜之下,必须整块镜片材料皆为没有缺点和均匀而没有多相性,而反射镜只需要将一个表面完美的磨光,磨制相对简易。
•除真空环境下,不同颜色的光在穿透介质时会有不同的播速度,这会造成折射镜特有的色差。
•大口径透镜在制造和操作上都有技术上的困难。其一是所有的材料都会因为重力而下垂,观测举得最高而且也是相对较重的透镜只能在镜片周围加以支撑,另一方面,面镜除了反射面以外,可以在反射面的背面和其他的侧边进行支撑。
光学望远镜大小在20世纪稳定的增加,在1910至1940年增加一倍,在1940至1990年又增加一倍。现在最大的望远镜是11公尺的SALT和Hobby-Eberly望远镜,以及10.4公尺的 Gran Telescopio Canarias。
在1980年代,在技术上作出改进的新一代望远镜有了长足的进步,这些进步包括多镜片望远镜,可以控制镜片的个人电脑,另一个主要的进展是旋转的熔炉,可以用离心力让望远镜的镜片在融炉中就接近要磨制的形状(曲率半径)。
其他形式
•双筒望远镜是将两架单筒望远镜肩并肩的组合在一起,而能同时使用的望远镜。这种望远镜最主要的实用优点不是放大,而是在黎明或薄暮时有明亮的视场。与指南针结合在一起的单筒或双筒望远镜,在军队的炮兵单位和船舰会用于三角测量与地形(海岸)特征的导航上。手持的望远镜不会受到手震影响的极限是七倍,因此要有明亮的视场和最佳倍数的双筒望远镜是7×50的规格。
由于双筒望远镜有视场较广,较明亮且容易操作、较专业望远镜便宜等原因,成为天文爱好者平时学习观测的常用器材,而较大口径的双筒望远镜更成为了一些天文爱好者成功寻得新彗星的重要器材;另外亦有天文爱好者尝试把两具同一口径的反射望远镜组装成双筒望远镜。
自主研发
完全由中国自主发明的新型大视场望远镜———大天区面积光纤光谱天文望远镜(LAMOST)在位于河北省兴隆县的国家天文台兴隆观测基地落成。这标志着中国第一次在望远镜类型上占有一席之地。
在技术上,LAMOST在其反射施密特改正镜上同时采用了薄镜面主动光学和拼接镜面主动光学技术,突破了世界上光学望远镜大视场不能同时兼备大口径的瓶颈,使中国主动光学技术处于国际领先地位。它采用的并行可控式光纤定位技术解决了同时精确定位4000个观测目标的难题,是一项国际领先的技术创新。
该望远镜的各项指标均已达到甚至超过设计要求,在调试过程中单次观测可同时获得3000多条天体光谱的能力,已成为中国最大的光学望远镜、世界上最大口径的大视场望远镜,也是世界上光谱获取率最高的望远镜。大量天体光学光谱的获取是大视场、大样本天文学研究的关键。但迄今由成像巡天记录下来的数以百亿计的各类天体中,只有约万分之一进行过光谱观测。LAMOST将突破天文研究中光谱观测的这一瓶颈,对上千万个星系、类星体等河外天体的光谱巡天,将在河外天体物理和宇宙学研究以及河内天体物理和银河系研究上作出重大贡献。中科院常务副院长、LAMOST工程项目领导小组负责人白春礼在的落成典礼上说,LAMOST的建成和投入观测,将使中国具备世界领先的主动光学技术和多目标光谱观测能力;将为中国天文学研究增添高水平的观测设施和平台;将为中国在宇宙大尺度结构、银河系结构、暗能量等相关领域的研究提供必要的条件和技术支撑。
技术突破
LAMOST中最具创新的部分是24块对角线1.1米的六角形平面子镜拼接成的反射施密特改正镜,观测过程中通过计算机控制这些子镜面形,使其实时变形成一系列不同的高精度的非球面,从而实现传统光学无法实现的这种世界上独一无二的大视场(广角)兼备大口径的主动反射施密特光学系统,以便精确地获取大量的天体光谱信息。我们在一块大反射镜上同时采用了薄镜面主动光学和拼接镜面主动光学技术,这不仅是在国际上将主动光学技术推进到新的前沿,也是在国际上发展出了第三种新类型的主动光学。我们还采用了并行可控式光纤定位技术解决了同时精确定位4000个观测目标的难题,远超过目前国际上最多同时定位600多根光纤。这都是国际领先的技术创新。
由中国科学家创造性设计和建造的这座望远镜,在口径、视场和光纤数目三者的结合上,超过了此前雄居世界第一的大视场巡天仪器——美国斯隆数字巡天望远镜,也一举超过了所有国际上已完成或正在进行的大视场多天体光纤光谱巡天计划,成为当今世界上获取天体光谱能力最强大的天文观测设备。
落成选址
参考资料
[1]
光学望远镜图书章节 · 超星发现[引用日期2016-12-08]