α粒子散射实验(证实汤姆生模型正确性的实验)
VLoG
次浏览
更新时间:2023-05-22
α粒子散射实验
证实汤姆生模型正确性的实验
基本信息
中文名 | α粒子散射实验 |
外文名 | Geiger–Marsden experiment(s) 又称Rutherford gold foil experiment |
别名 | 金箔实验 |
类型 | 物理实验 |
实验目的 | 证实汤姆生原子模型的正确性 |
时间 | 1909年 |
收起
发展历史
实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆生模型所预言的大得多的偏转,大约有 的α粒子偏转角大于,甚至观察到偏转角等于的散射,称大角散射,更无法用汤姆森模型说明。1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。根据大角散射的数据可得出原子核的半径上限为米,此实验开创了原子结构研究的先河。这个实验推翻了J.J.汤姆森在1903年提出的原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动,为建立现代原子核理论打下了基础。
实验内容
实验理论
钋元素散射实验
约瑟夫约翰汤姆森
J. J. Thomson(汤姆森)理论是基于“单次原子碰撞产生的散射是很小的”这个假设。而且对原子特殊结构的假设也不允许α 粒子在穿过单个原子时有很大的偏转,除非假设正电荷球的直径与原子球的直径相比是极小的。
实验目的
卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。
α粒子散射实验示意图
在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有荧光屏的显微镜能够围绕金箔在一个圆周上移动。
实验结果
实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过,有的甚至几乎达到而被反弹回来,这就是α粒子的散射现象。
铜原子结构
按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,如图14-2(b)中的1、3、4、6、7、9,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转,如图14-2(b)中的2,5,8。
根据α粒子散射实验,可以估算出原子核的直径约为米~米,原子直径大约是,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。
最终结论
结果:大多数散射角很小,约散射大于;极个别的散射角等于。
结论:正电荷集中在原子中心。
大多数α粒子穿透金箔:原子内有较大空间,而且电子质量很小。
极少数的α粒子反弹:原子中的微粒体积较小,但质量相对较大。