欧姆定律(乔治·西蒙·欧姆提出的物理定律)
VLoG
次浏览
更新时间:2023-05-22
欧姆定律
乔治·西蒙·欧姆提出的物理定律
随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。
定义
常见简述:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。
标准式:
变形公式:;
部分电路公式:
(由欧姆定律的推导式【U=IR;R=U/I】不能得到①电压与电流成正比,与电阻成正比;②电阻与电压成正比,与电流成反比。所以,这些变形公式仅用于计算,不能表示决定关系。)
欧姆定律成立时,以导体两端电压为横坐标,导体中的电流I为纵坐标,所做出的曲线,称为伏安特性曲线。这是一条通过坐标原点的直线,它的斜率为电阻的倒数。具有这种性质的电器元件叫线性元件,其电阻叫线性电阻或欧姆电阻。
全电路公式:
单位均为欧姆(Ω).的单位是安培(A).
欧姆定律
发展简史
1826年,欧姆用上面图中的实验装置导出了他的定律。在木质座架上装有电流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盘,s是观察用的放大镜,m和m'为水银杯,abb'a'为铋框架,铋、铜框架的一条腿相互接触,这样就组成了温差电偶。A、B是两个用来产生温差的锡容器。实验时把待研究的导体插在m和m'两个盛水银的杯子中,m和m'成了温差电池的两个极。
欧姆准备了截面相同但长度不同的导体,依次将各个导体接入电路进行实验,观测扭力拖拉磁针偏转角的大小,然后改变条件反复操作,根据实验数据归纳成下关系:
x=q/(b+l)式中x表示流过导线的电流的大小,它与电流强度成正比,A和B为电路的两个参数,L表示实验导线的长度。
发展历史
1825年5月欧姆在他的第一篇科学论文中发表电流产生的电磁力的衰减与导线长度的关系,是有关伽伐尼电路的论文,但其中的公式是错误的。
1826年4月欧姆改正了这个错误,得出有名的欧姆定律。
1827年出版了他最著名的著作《伽伐尼电路的数学论述》,文中列出了公式,明确指出伽伐尼电路中电流的大小与总电压成正比,与电路的总电阻成反比,式中S为导体中的电流强度(I),A为导体两端的电压(U),L为导体的电阻(R),可见,这就是今天的部分电路欧姆定律公式。
1876年,詹姆斯·麦克斯韦与同事,共同设计出几种测试欧姆定律的实验方法,能够特别凸显出导电体对于加热效应的响应。
实验验证
欧姆定律
欧姆定律
导率(传导率)进行研究。
1826年4月欧姆发表论文,把欧姆定律改写为:x=ksa/ls为导线的横截面积,K表示电导率,A为导线两端的电势差,L为导线的长度,X表示通过L的电流强度。如果用电阻l'=l/ks代入上式,就得到X=a/I'这就是欧姆定律的定量表达式,即电路中的电流强度和电势差成正比而与电阻成反比。
适用范围
微观解释
设有一段金属导体,横截面积为S,长为L,在导体的两端加上电压U,则导体中的场强E=U/L.这时,一自由电子在电场力F=eE的作用下做定向移动。设电子的质量为m,则定向移动的加速度为a=F/m=eE/m=U(e/mL)。
自由电子相继两次碰撞的间隔有长有短,设平均时间为t,则自由电子在下次碰撞前的定向移动速率vt(以t为下标)=at,那么在时间t内的平均速率v=at/2。结合之前推出的a=U(e/mL),得自由电子的平均移动速率为v=U(et/2mL)。
代入电流的微观表达式I=neSv,得I=U(neSt/2mL)
因此,导体中的电流强度I与两端的电压U成正比。导体两端的电压与导体中的电流强度的比值(2mL/neSt)就是这段导体的电阻。由此看出,导体的电阻与长度成正比,与横截面积成反比,与1/ne^2t成正比。1/net由导体的特性决定。因此,在一定温度时,导体的电阻是R=ρL/S。ρ是导体的电阻率。对于一定温度与相同的导体,电阻率一定。
欧姆定律
局限原因
应用领域
电机工程学和电子工程学
在电机工程学和电子工程学里,欧姆定律妙用无穷,因为它能够在宏观层次表达电压与电流之间的关系,即电路元件两端的电压与通过的电流之间的关系。
物理学
欧姆定律1
欧姆定律
假设,沿着积分路径,电流密度J=jI为均匀电流密度,并且平行于微小线元素:
dL=dlI;其中,I是积分路径的单位矢量。
那么,可以得到电压:
Vgh=Jρl;其中,l是积分路径的径长。
假设导体具有均匀的电阻率,则通过导体的电流密度也是均匀的:
电压Vgh简写为V。电压与电流成正比:
V=Vgh=Iρl/a。总结,电阻与电阻率的关系为
R= ρl/a。假设J> 0 ,则V> 0 ;将单位电荷从点g移动到点h,电场力需要作的机械功w> 0 。所以,点g的电势比点h的电势高,从点g到点h的电势差为V。从点g到点h,电压降是V;从点h到点g,电压升是V。
给予一个具有完美晶格的晶体,移动于这晶体的电子,其运动等价于移动于自由空间的具有有效质量(effective mass)的电子的运动。所以,假设热运动足够微小,周期性结构没有偏差,则这晶体的电阻等于零。但是,真实晶体并不完美,时常会出现晶体缺陷(crystallographic defect),有些晶格点的原子可能不存在,可能会被杂质侵占。这样,晶格的周期性会被扰动,因而电子会发生散射。另外,假设温度大于绝对温度,则处于晶格点的原子会发生热震动,会有热震动的粒子,即声子,移动于晶体。温度越高,声子越多。声子会与电子发生碰撞,这过程称为晶格散射(lattice scattering)。主要由于上述两种散射,自由电子的流动会被阻碍,晶体因此具有有限电阻。
凝聚态物理学研究物质的性质,特别是其电子结构。在凝聚态物理学里,欧姆定律更复杂、更广义的方程非常重要,属于本构方程(constitutive equation)与运输系数理论(theory of transport coefficients)的范围。
影响
欧姆定律及其公式的发现,给电学的计算,带来了很大的方便。这在电学史上是具有里程碑意义的贡献。 1854年欧姆与世长辞。十年之后英国科学促进会为了纪念他,将电阻的单位定为欧姆,简称“欧”,符号为Ω,它是电阻值的计量单位,在国际单位制中是由电流所推导出的一种单位。
相关合集
电磁学的发展史
共11个词条718阅读
电荷守恒定律
物理学的定律之一
库仑定律
电学史中的一块重要的里程碑
伏打电堆
1800年伏打发明的发电器
查看更多
相关视频
全部
独家
2627次播放01:08
欧姆定律——电流与电压的奇妙关系
简介
7902次播放03:10
2.3.1欧姆定律
定义
4054次播放06:24
欧姆实验后再次将论文发表,不料又引来更大的嘲笑声|解码科技史
合集
发展历史
3个视频
769次播放06:01
欧姆的研究在德国大受打击,但在其他国家却恰恰相反|解码科技史
影响