固溶强化(材料科学学科中的现象)
VLoG
次浏览
更新时间:2023-05-20
原理
Solid solution strengthening
融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。
影响因素
(1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显着。
(2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。
程度
效果
1. 屈服强度、拉伸强度和硬度都要强于纯金属
2. 绝大部分情况下,延展性低于纯金属
3. 导电性比纯金属低很多
4. 抗蠕变,或者在高温下的强度损失,通过固溶强化可以得到改善
应用实例
1.微量Ag对铜合金性能的影响
Cu-Ag合金是典型的固溶强化型合金,在共晶温度(779℃)时银在铜中的溶解度可达8%。银分布在固溶体中,从而提高铜的强度和硬度,产生显著的固溶强化效应。一般说来,铜中加入合金元素,溶质原子溶入晶格后会引起晶体点阵畸变,这种畸变的晶格点阵对运动电子的散射作用也相应加剧。因此,固溶强化对铜的导电性和强度的效应是矛盾的。但银与可固溶于铜的其他元素不同,含银量少时,铜的电导率和热导率的下降不多,对塑性的影响也甚微,并显著提高铜的再结晶温度、蠕变强度和抗高温热低周疲劳。在相关文献中有介绍:在铜中加入0.2%-1%银后,导电率仍保持在100%IACS,形变强化后强度可达到400MPa以上:Cu-0.085%Ag经冷加工后,强度可达到420MPa,导电率为100%IACS,Cu-10%Ag经适当处理后,强度可达到1000MPa,导电率可达80%IACS。
2. 微量元素对Pt或Pt-Rh合金高温强度的影响
微量或少量元素对 Pt 和 Pt-Rh 合金的高温强度有明显的影响,溶质W、Mo、Ir、Ru、Os、Re 等内聚能很高,它们对Pt、Pd的强化效果很好,所有过渡族元素及Cu、Ag和Au在Pt中也有相当高的固溶度,特别是周期表中Pt附近的元素与Pt形成连续固溶体。在不甚高的温度范围内,这些元素对Pt均有不同程度的固溶强化作用。
3. V-4Cr-4Ti合金的氢致硬化
钒合金具有较强的吸氢能力,合金元素Ti能显著提高合金的吸氢量,在发生氢脆断裂的临界氢含量下,达到氢致脆性断裂之前,钒合金的氢致硬化是一种典型的固溶强化。这是因为H在合金中是非常容易扩散的,其可以与位错发生交互作用,从而提高合金的强度,并使合金的塑性降低。H引起合金的固溶强化,使合金的晶粒强度升高。而金属Ti是一种很好的吸气剂,在钒合金中,由于Ti对其中中间隙杂质原子C,N,O和H等具有很强的吸附作用,它能减低它们在合金中的扩散系数,会降低合金中H与位错的交互作用,使合金具有相对优良的抗氢脆性能。
4. Al-Zn-(Cu)合金的固溶强化效应
经过均匀化处理的Al-Zn-2Cu合金,固溶处理后形成单相固溶体。如再对其进行阶梯退火,得到的组织为在Al基固溶体上弥散分布着细小的Zn相,其是由α-Al 和β-Zn 相组成。可见Al-Zn-2Cu合金在固溶处理后的阶梯退火过程中,在发生失稳分解后,已经通过不连续沉淀形成了两相平衡组织。该合金铸态组织是由α-Al 和β-Zn 相组成的两相枝晶组织。阶梯退火所得到的平衡态组织较铸态组织更细小,但其硬度远远低于铸态组织的硬度。由此可见,在Al-Zn-2Cu合金中与固溶强化效应相比,析出强化效应相对较弱,随着溶质原子的析出,所产生的析出强化效应要小于所损失的固溶强化效应,造成合金的强度下降。Al-Zn-(Cu)合金的硬度主要取决于固溶强化效应。
5.钴基高温合金