分子机器(分子机器)
VLoG
次浏览
更新时间:2023-05-23
分子机器
简介
动力来源
研究历史
分子机器
到了1991年,斯托达特实现了分子机器诞生的第二步,他成功合成了“轮烷”。轮烷是一个或多个环状分子和一个或多个哑铃状的线形分子为轴组成的分子集合。哑铃状的线形分子作轴穿过环状分子的空腔,两端结合有体积较大分子以防止线形分子滑出,从而形成了稳定的轮烷结构。
基于上述研究成果,斯托达特的研究团队先后成功实现环状分子在线形分子表面上升0.7纳米的“分子电梯”,用轮烷构成的“分子肌肉”成功弯折了一块很薄的金箔,还开发出一种基于轮烷的计算机芯片,被认为在将来有望颠覆传统的计算机芯片技术。
费林加则是研发出分子马达(分子发动机)的第一人。1999年,他研制了一个分子转子叶片,叶片能够朝着同一方向持续旋转。这个马达可以让一个28微米长、比马达本身大1万倍的玻璃缸旋转起来。2011年,费林加的研究小组在分子马达的基础上制造了一款四驱纳米汽车,一个分子底盘将4个分子马达连接在一起作为轮子,当分子马达旋转时,纳米汽车就能向前行驶。
至此,分子机器动起来了。
应用领域
分子机器
随着生物技术水准的迅速进步,这样的生物技术药物可能会很快地代替现有药物,为人类创造更好的福祉,可是这些构建出来的融合蛋白还远远未能表达出人们所企求的结构和功能水准——人工多结构域“蛋白质机器”所应该具有的理想境界,充其量它们只能算作是蛋白质分子机器的一个雏形。现在,正有科学家试图把如此重要的机械在分子尺寸上组装起来,制造一种极其微小的装置,科学家意图使用这种装置来操控别的分子,运用于医学可以用来清除肌体深处的病毒、癌细胞等,它们具有不可限量的应用前景。
不少国家纷纷制定相关战略或者计划,投入巨资抢占分子机器人这种新科技的战略高地。《机器人时代》月刊日前指出:分子机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。
诺贝尔奖评选委员会表示,就像19世纪30年代,当电动马达被发明出来时,科学家未曾想过它会在电气火车、洗衣机、电风扇上被广泛运用,给人类生活带来翻天覆地的变化。正如当年的电动马达一样,分子机器未来很有可能将用于开发新材料、新型传感器和能量存储系统等,为人类的未来提供了无限可能。
荣获诺贝尔奖
1983年,让-皮埃尔·绍瓦热迈出了通往分子机器的第一步,他将两个环状分子连成链状,并将其命名为索烃。随后的1991年,斯托达特成功制备了轮烷,其中一个分子为链,一个分子为环,环分子可以绕链转动。在此基础上,科学家成功研制了分子起重机、分子肌肉和分子芯片。费林加则是发展分子发动机的第一人。1999年,他制备了一种能够持续朝一个方向转动的分子发动机,用它转动了比它大一万倍的玻璃杯,并且设计了一个微型车。
2016诺贝尔奖获奖者带化学走出了僵局,并用给予能量的方式控制了分子的运动。从发展的眼光看,分子机器之于我们正如电动机之于19世纪的科学界先辈,那时他们并不知道这些线圈和磁石会化为电车、洗衣机、电风扇等等走进千家万户。分子机器很有可能会在未来的新材料、传感器、储能系统等领域大显身手。
参考资料
[1]
新科诺贝尔化学奖成果揭示世界最小机器诞生历程 · 央视网[引用日期2016-10-06]
[2]
分子机器人:定点清除病毒、癌细胞 · 生命经纬新闻中心[引用日期2016-10-06]
[3]
深度解读2016诺贝尔化学奖:分子马达与纳米火箭[引用日期2016-10-05]