晶体(有明确衍射图案的固体)
VLoG
次浏览
更新时间:2023-05-20
晶体
本词条是多义词,共3个义项
有明确衍射图案的固体
晶体(crystal)是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。其分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。
基本信息
中文名 | 晶体 |
外文名 | crystal |
外观 | 固体 |
应用学科 | 物理 |
特点 | 呈现规则的几何形状 |
特征
(1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。
晶体
(3)单晶体有各向异性的特点。
(4)晶体可以使X光发生有规律的衍射。
宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。
(5)晶体相对应的晶面角相等,称为晶面角守恒。
结构
具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。
晶体内部结构中的质点(原子、离子、分子、原子团)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。
合成铋单晶
几何形状
晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。
晶体
但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。
为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。
由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。
类别实例
3.斜方晶系:硫 碘 硝酸银
5.三斜晶系:硫酸铜 硼酸
6.三方(菱形)晶系:砷 水晶 冰 石墨
特性
晶体
1. 长程有序:晶体内部原子在至少在微米级范围内的规则排列。
2. 均匀性:晶体内部各个部分的宏观性质是相同的。
3. 各向异性:晶体中不同的方向上具有不同的物理性质。
4 .对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
5. 自限性:晶体具有自发地形成封闭几何多面体的特性。
6. 解理性:晶体具有沿某些确定方位的 晶面劈裂的性质。
7. 最小内能:成型晶体内能最小。
8. 晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。
具体介绍:
均一性和异向性
因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。
最小内能与稳定性
晶体
对称性
晶体的对称表现在晶体中相等的晶面,晶棱和角顶有规律的重复出现。这是由于它具有规律的格子构造。是其在三维空间周期性重复的体现。既晶体的对称性不仅表现在外部形态上,而且其内部构造也同样也是对称的。
在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。晶体的理想外形或其结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作後复原。这样的操作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同操作,形成一个对称操作群。
镓, 一种很容易结成大块单晶的金属
(2)空间点阵只能有14种形式。n次对称轴的基本旋转操作为旋转,因此,晶体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。
晶体
种类
晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下形成,此时分子可利用的能量不多。
有四种主要的晶体键。离子晶体由正离子和负离子构成,靠不同电荷之间的引力(离子键)结合在一起。氯化钠是离子晶体的一例。原子晶体(共价晶体)的原子或分子共享它们的价电子(共价键)。钻石、锗和硅是重要的共价晶体。金属晶体是金属的原子变为离子,被自由的价电子所包围,它们能够容易地从一个原子运动到另一个原子,可形象的描述为沉浸在自由电子的海洋里(金属键)。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变动。因为这个结合力很弱(范德华力和氢键),这些晶体在很低的温度下就熔化,且硬度极低。典型的分子结晶如固态氧和冰。
在离子晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。
用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的钛、铁或铬粉,通过火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。
生长人造钻石需要高于的温度和大气压。人造钻石砂粒小且黑,它们适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒的顶端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地沿棒下移。
缺陷
分类
晶体缺陷各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构周期势场畸变的一切因素。
如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的,如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺陷是近三、四年国内外科学研究十分注意的一个内容。
根据缺陷的作用范围把真实晶体缺陷分四类:
点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。
体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。
按形成的原因不同分三类:
1热缺陷(晶格位置缺陷)
在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。
2 组成缺陷
外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。
3 电荷缺陷
晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来电子轨道上留下了电子空穴。
符号及反应方程式
1. 缺陷符号及缺陷反应方程式
(1)晶格空位:正常结点位没有质点,
(2)间隙离子:除正常结点位置外的位置出现了质点,
(3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则
(4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若占据间隙位,则Li。
晶体
(5)电子空穴 h·(代表存在一个正电荷),·表示有效正电荷
如:从晶体中取走一个,留下一个空位造成电价不平衡,多出负一价。相当于取走Na原子加一个负有效负电荷,e失去→自由电子,剩下位置为电子空穴h·
(7)复合缺陷
缺陷反应方程式
必须遵守三个原则
(1)位置平衡——反应前后位置数不变(相对物质位置而言)
(2)质点平衡——反应前后质量不变(相对加入物质而言)
(3)电价平衡——反应前后呈电中性
例:将中:
将中
注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对的,这要知道其它条件才能确定哪个缺陷反应是正确的。
确定(1)式密度增加,要根据具体实验和计算。
热缺陷
(晶格位置缺陷)
只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大,而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置,在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷——热缺陷。
热缺陷两种基本形式:
a-弗仑克尔缺陷,
b-肖特基缺陷
(1)弗仑克尔缺陷
具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子),在原来位置上留下空位。
特点:空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。
(2)肖特基缺陷
表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。
特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖特基缺陷。
晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生,如单晶生产,要非常快冷却。
3. 组成缺陷
主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位
4. 电荷缺陷(Charge defect)
从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在OR时,导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到一能量Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷。
例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电性,可采用掺加杂质的办法,如在半导体硅中掺入P和B,掺入一个P,则与周围Si原子形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级上,叫施主能级,叫n型半导体。当掺入一个B,少一个电子,不得不向其它Si原子夺取一个电子补充,这就在Si原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级,叫P型半导体,自由电子,空穴都是晶体一种缺
点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有重要意义,使晶体着色等。
线缺陷
实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击,切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体的有序排列,形成线状缺陷。
位错直观定义:晶体中已滑移面与未滑移面的边界线。
这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道,位错区域质点排列严重畸变,有时造成晶体面网发生错动。对晶体强度有很大影响。
刃型位错
其形式可以设想为:在一完整晶体,沿晶面横切一刀,从,将面上半部分,作用以压力δ,使之产生滑移,距离(柏氏矢量晶格常数或数倍)滑移面,滑移区,未滑移区,AD为已滑移区交界线—位错线。
正面看简图:如上图
滑移上部多出半个原子面,就象刀刃一样(劈木材)称刃型位错。
特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。
螺型位错
其形成可设想为:在一完整晶体,沿晶面横切一刀,在面上部分沿X方向施一力δ,使其生产滑移,滑移区未滑移区,交界线AD(位错线)
特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。
刃型位错与螺型位错
a-正常面网,
b-刃型位错,
c-螺型位错
主要从各自特点区别
刃型:滑移方向与位错线垂直,多半个原子面,位错线可为曲线。
螺型:滑移方向与位错线平行,呈螺旋状,位错线直线。
位错具有以下基本性质:
(1)位错是晶体中原子排列的线缺陷,不是几何意义的线,是有一定尺度的管道。
(2)形变滑移是位错运动的结果,并不是说位错是由形变产生的,因为一块生长很完事的晶体中,本身就存在很多位错。
(3)位错线可以终止在晶体的表面(或多晶体的晶界上),但不能终止在一个完事的晶体内部。
(4)在位错线附近有很大应力集中,附近原子能量较高,易运动。
面缺陷
晶面不对称
由于晶体表面处的离子或原子具有不饱和键,有很大反应活性,表面结构出现不对称性,使点阵受到很大弯曲变形,因而能量比内部能量高,是一种缺陷。
(1)小角度晶界(镶嵌块)
尺寸在的小晶块,彼此间以几秒到的微小( )角度倾斜相交,形成镶嵌结构,有人认为是棱位错,由于晶粒以微小角度相交,可以认为合并在一起,在晶界面是形成了一系列刃型位错。
(2)大角度晶界,各晶面取向互不相同,交角较大,在多晶体中,晶体可能出现大角度晶界。在这种晶界中,顶点排列接近无序状态,晶界处是缺陷位置,所以能量较高,可吸附外来质点。晶界是原子或离子扩散的快速通道,也是空位消除的地方,这种特殊作用对固相反应,烧结起重要作用,对陶瓷、耐火材料等多晶材料性能如蠕变、强度等力学性能和极化、损耗等介电性能影响较大。
堆垛层错
离子堆垛过程中发生了层次错动,出现堆垛层错,如面心立方堆积形式为中间的B层和C层发生了层次错动,出现缺陷(一般了解)
定义:化合物中各元素的原子数之比不是简单的整数而出现了分数,如等。
可偏离化合式的化合物
非化学计量化合物缺陷
会产生这种缺陷,分子式为,从化学计量观念,正负离子比为由于揣氧不足,在晶体中存在氧空位,而变为非化学计量化合物。从化学观念看,缺氧可以看作是四价钛和三价钛氧化物的固体溶液,即中的固溶体,或从电中性考虑,Ti由四价→三价,原因:获得一个电子→,所获得的电了是由于氧不足脱离。正常晶格结点放出的,在电场作用下,这一电子可以一个钛离子位置迁移到另一个钛离子位置,并非固定在某一钛离子上,从而形成电子电导,具有这种缺陷的材料称n型半导体。这种非化学计量化合物缺陷方程可写成:例:在还原气氛下
(2)也可看成部分O由晶格逸出变成气体
可见:这种非化学计量化合物的形成多是由变价正离子构成的氧化物,由高价变为低价,形成负离子空位,还有等,与气氛有关。
阳离子过剩
形成间隙阳离子
如,过剩的金属离子进入间隙位,为保持电中性,等价电子被束缚在间隙位的金属离子周围。例:在锌蒸气中加热,颜色逐渐加深变化。
负电子过剩
形成间隙负离子。
发现,可以看作中的固溶体,当负离子过剩进入间隙位置时,结构中必须出现两个电子空穴,以平衡整体电中性,相应正离子电价升高,电子空穴在电场作用下产生运动,这种材料称P型半导体。
形成正离子空位
由于存在正离子空位,为保持电中性,在正离子空位周围捕获电子空位,因此其也是P型半导体,如即是。例:在氧气下形成这种缺陷,实际上是中形成的固溶体(高价取代低价),即,同时在晶格中形成个正离子空位,在氧气条件下,氧气进入FeO晶格结构中,变为氧离子,必须从铁离子获得两个电子,使,并形成VFe。
可见,非化学计量化合物缺陷的形成主要受气氛影响,也与温度有关,严格说,世界上所有化合物都是非化学计量的,只是程度不同而已。
结晶
产品代表
石英、云母、明矾、食盐、硫酸铜、味精。
相关视频
全部
2033次播放02:15
晶体为什么有固定的熔点?晶体的融化微观原理