G蛋白偶联受体(膜蛋白受体的统称)
VLoG
次浏览
更新时间:2023-05-22
基本信息
中文名 | G蛋白偶联受体 |
外文名 | G Protein-Coupled Receptors, GPCRs |
定义 | 指一大类膜蛋白受体的统称 |
七个跨膜 | |
引自 | 第八版医学生理学 |
简介
人κ-阿片肽受体与JDTic的复合物
分类
G蛋白偶联受体中的七个跨膜α螺旋
A类(或第一类,视紫红质样受体)
B类(或第二类,分泌素受体家族)
C类(或第三类,代谢型谷氨酸受体)
D类(或第四类,真菌交配信息素受体)
E类(或第五类,环腺苷酸受体)
F类(或第六类,Frizzled/Smoothened家族)
结构
G蛋白偶联受体
与G蛋白偶联受体相似,脂联素受体(例如ADIPOR1和ADIPOR2)也包含七个跨膜域,但是它们以相反的方向跨于膜上(即N端在膜内而C端在膜外),并且它们也不与G蛋白相互作用。
早期关于G蛋白偶联受体结构的模型是基于他们与细菌视紫红质(Bacteriorhodopsin)之间微弱的相似(Analogy)关系的,其中后者的结构已由电子衍射(蛋白质数据库资料编号:PDB2BRD和PDB1AT9)和X射线晶体衍射(PDB1AP9)实验所获得。在2000年,第一个哺乳动物G蛋白偶联受体——牛视紫红质的晶体结构(PDB1F88)被解出。2007年,第一个人类G蛋白耦联受体的结构(PDB2R4R和PDB2R4S)被解出。随后不久,同一个受体的更高分辨率的结构(PDB2RH1)被发表出来。这个人G蛋白耦联受体——β2肾上腺素能受体,显示出与牛视紫红质的高度相似,不过两者在第二个膜外环的构象上完全不同。由于第二膜外环组成了一个类似盖子的结构罩住了配体结合位点,这个构象上的区别使得所有对从视紫红质建立G蛋白耦联受体同源结构模型的努力变得困难重重。
一些激活的即结合了配体的G蛋白耦联受体的结构也已经被研究清楚。这些结构显示了G蛋白耦联受体的膜外部分与配体结合了之后会导致膜内部分发生构象变化。其中最显著的变化是第五和第六跨膜螺旋之间的膜内环会向外移动,而激活的β2肾上腺素能受体与G蛋白形成的复合体的结构显示了G蛋白α亚基正是结合在了上述运动所产生的一个空穴处。
功能
G蛋白偶联受体参与众多生理过程。包括但不限于以下例子:
感光:视紫红质是一大类可以感光的G蛋白偶联受体。它们可以将电磁辐射信号转化成细胞内的化学信号,引导这一过程的反应称为光致异构化(Photoisomerization)。具体细节为:由视蛋白(Opsin)和辅因子视黄醛共价连接所构成的视紫红质在光源的刺激下,分子内的视黄醛会发生异构化,从“11-顺式”变成“全反式”,这个变化进一步引起视蛋白的构象变化从而激活与之偶联的G蛋白,引发下游的信号传递过程。
行为和情绪的调节:哺乳动物的脑内有很多掌控行为和情绪的神经递质对应的受体是G蛋白偶联受体,包括血清素,多巴胺,γ-氨基丁酸和谷氨酸等。
免疫系统的调节:很多趋化因子通过G蛋白偶联受体发挥作用,这些受体被统称为趋化因子受体。其它属于此类的G蛋白偶联受体包括白介素受体(Interleukin receptor)和参与炎症与过敏反应的组胺受体(Histamine receptor)等。
维持稳态:例如机体内水平衡的调节。
激活
胞内部分有G蛋白结合区。G蛋白α,β,γ三种亚单位组成的三聚体,静息状态时与GDP结合.当受体激活时GDP-αβγ复合物在Mg2+参与下,结合的GDP与胞质中GTP交换,GTP-α与βγ分离并激活效应器蛋白,同时配体与受体分离。α亚单位本身具有GTP酶活性,促使GTP水解为GDP,在与βγ亚单位形成G蛋白三聚体恢复原来的静息状态。
有三种主要的G蛋白介导的信号通路,由四种通过序列的同源性差异区别开来的G蛋白亚类(Gαs、Gαi/o、Gαq/11和Gα12/13)介导。G蛋白的每一亚类都由多种蛋白质组成,每一种蛋白质都是多种基因或剪接变异的产物,这些基因或剪接变异可能使它们在信号传导特性方面存在细微到明显的差异,但一般来说,它们可以分为这四类。由于各种可能的βγ亚基组合的信号转导特性彼此之间几乎没有根本的区别,所以这些类别是根据它们的α亚基的亚型来定义的。
虽然大多数GPCRs能够激活不止一种Gα亚基,但它们也表现出对其中一种亚型的偏好。激活的亚型依赖于与GPCR结合的配体,这被称为功能选择性。然而,任何一个特定的激活信号的结合也可能启动多个不同的G蛋白的激活,因为激活信号可能能够激活GPCR的GEF结构域的多个活性构象。一个构象会优先激活Gα的一种异构体,但如果优先的异构体难以激活也有可能激活另一种异构体。此外,反馈途径可能导致受体修饰(例如,磷酸化),从而改变G蛋白的偏好。不管这些细微差别,GPCR的首选偶联伙伴通常是根据在大多数生理或实验条件下内源性配体激活程度最高的G蛋白来定义的。
1、Gαs和Gαi/o径的作用对象是环腺苷酸(cAMP)的生成酶——腺苷酸环化酶(AC)。虽然在哺乳动物中有十个不同的AC基因产物,但每一个都在组织分布或功能上有细微的差别,它们都催化ATP向cAMP的转换。Gαs类G蛋白直接激活这个过程。相反,与Gαi/o类G蛋白的相互作用抑制AC生成cAMP。因此,偶联Gαs的GPCR会抵消偶联Gαi/o的GPCR的作用,反之亦然。细胞质内cAMP的水平进而可以决定各种离子通道以及丝氨酸/苏氨酸特异性蛋白激酶A (PKA)家族成员的活性。因此,cAMP被认为是第二信使,而PKA是第二效应因子。
2、Gαq/11通路的效应因子是磷脂酶C-β (PLCβ),它催化膜结合的磷脂酰肌醇4,5-二磷酸(PIP2)裂解为肌醇1,4,5-三磷酸(IP3)和二酰基甘油(DAG)。IP3作用于内质网(ER)膜上的IP3受体,促使内质网释放Ca,而DAG沿质膜扩散,可激活丝氨酸/苏氨酸特异性蛋白激酶C (PKC)结合在膜上的部分。由于PKC的许多异构体也被细胞内Ca的增加激活,这两种途径也可以相互作用,通过相同的二级效应体PKC发出信号。升高的细胞内Ca也可以结合和激活被称为钙调素的蛋白质,钙调素进而激活Rho GTP酶,。一旦与GTP结合,Rho可以继续激活和调节细胞骨架上的各种蛋白,如Rho激酶(ROCK)。大多数匹配Gα12/13的GPCR通常也匹配Gαq/11。
诺贝尔奖
北京时间2012年10月10日下午5点45分,2012年诺贝尔化学奖揭晓,两位美国科学家罗伯特·莱夫科维茨(Robert J. Lefkowitz)和布莱恩·克比尔卡(Brian K. Kobilka)因“G蛋白耦联受体研究”获奖。
Brian K. Kobilka美国斯坦福大学医学院的教授,分子和细胞生理学和医学博士。他也是ConfometRx,一家专注于G-蛋白耦联受体的生物技术公司的共同创办人。2011年入选美国国家科学院院士。G蛋白耦联受体最新研究成果:Kobilka教授领导组成的国际研究团队一连公布了三篇论文,报道了G蛋白耦联受体(GPCR)作用复合物的详细晶体结构,这一发现被称为是一项真正具有突破意义的成果。G蛋白耦联受体(GPCR)是与G蛋白有信号连接的一大类受体家族,是最著名的药物靶标分子,调控着细胞对激素,神经递质的大部分应答,以及视觉,嗅觉,味觉等。目前世界药物市场上至少有三分之一的小分子药物是GPCR的激活剂或者拮抗剂,据报道,目前上市的药物中,前50种最畅销的药物20%就属于G蛋白受体相关药物,比如充血性心力衰竭药物Coreg,高血压药物Cozaar,乳腺癌药物Zoladex等等。
由于GPCR属于膜蛋白——穿插细胞膜多达7次,而且构象形态多,因此其结构生物学分析不容易开展,而这篇文章完成了GPCR跨膜信号作用复合物的X-射线晶体结构,实现了许多人未能完成的任务,正如密苏里州大学的Stephen Sprang所说的那样:这是一篇真正具有突破意义的文章,多年以来,我们这行里的人都在梦想得到这个结构图,因为它最终会告诉我们GPCR受体是如何发挥作用的。在这篇文章中,研究人员利用X线晶体成像技术(X-ray crystallographic)对与G蛋白耦联的β2肾上腺素能受体复合物进行了研究,据报道,G蛋白是一种由三个不同亚单位组成的蛋白,它很容易与GPCR蛋白分开,并且解离成三个独立的亚单位,而且这个复合物的大小大约是β2肾上腺素能受体蛋白的2倍。如果要拿到β2肾上腺素能受体蛋白——G蛋白复合物的晶体结构首先就得开发出纯化该复合物并且让它稳定存在的新技术,比如让复合物与抗体结合,或者对数千种不同的结晶条件进行系列实验等等。
另外一篇Nature文章则介绍了利用“肽酰胺氢-氘交换质谱”对这一信号作用复合物的蛋白动态所做的探测研究,同期Nature杂志还发表了特写文章“It's all about the structure”,称要确定这些复合物的结构特别具有挑战性。不过也有科学家表示,由于这项研究实验采用的是经过人工改造的,并且与抗体结合的GPCR蛋白复合体,这可能不能反应天然蛋白的真实情况。对此,Kobilka等人则认为他们已经做过蛋白功能实验,实验结果表明他们使用的蛋白与天然蛋白在功能上没有差异。
领导这项研究的是著名的结构生物学,斯坦福大学Brian K. Kobilka教授,他曾2007年与另外一位科学家Raymond C. Stevens,利用T4溶菌酶融合蛋白方法解析了第一个非视紫红质GPCR晶体结构:人β2肾上腺素受体,这篇发表在Sciene上的文章被引上千次,后来他还独立地通过抗体片段介导法解析了人β2肾上腺素受体的结构。
研究成果
参考资料
[1]
诺贝尔化学奖:G蛋白偶联受体 · 生物通[引用日期2013-05-05]
[2]
为癌症药物研发带来新契机,上海科学家发现前所未有的“受体自发激活”模式 · 今日头条[引用日期2022-04-14]