核糖核酸(遗传信息载体)
VLoG
次浏览
更新时间:2023-05-19
核糖核酸
遗传信息载体
基本信息
中文名 | 核糖核酸 |
别名 | RNA |
外文名 | Ribonucleic Acid |
本质 | 长链状分子 |
碱基 | A、G、C、U |
展开
分类
tRNA
如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transferRNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,已知的tRNA的种类在40种以上。
tRNA
①5’末端具有G(大部分)或C。
③有一个富有鸟嘌呤的环。
⑤有一个胸腺嘧啶环。
rRNA
核糖体RNA(ribosomalRNA,rRNA)是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%。
S为沉降系数(sedimentationcoefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。
miRNA
miRNA
小分子RNA
(small RNA)
存在于真核生物细胞核和细胞质中,它们的长度为100到300个碱基(酵母中最长的约1000个碱基)。多的每个细胞中可含有105~106个这种RNA分子,少的则不可直接检测到,它们由RNA聚合酶Ⅱ或RNA聚合酶Ⅲ所合成,其中某些像mRNA一样可被加帽。
主要有两种类型的小分子RNA:一类是snRNA(small nuclear RNA),存在于细胞核中;另一类是scRNA(small cytoplasmic RNA),存在于细胞质中。
小分子RNA通常与蛋白质组成复合物,在细胞的生命活动中起重要的作用。
①snRNA:
snRNA(smallnuclearRNA,小核RNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。某些snRNPs和剪接作用密切相关,它们分别与供体和受体剪接位点以及分支顺序相互补。
②scRNA:
端体酶RNA
端体酶RNA
反义RNA
上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。
非编码RNA
【新型生命暗物质】非编码RNA(核糖核酸),被称为生命体中“暗物质”。日前,中国科学技术大学单革教授实验室发现一类新型环状非编码RNA,并揭示了此类非编码RNA的功能和功能机理。成果发表在国际知名杂志《自然·结构和分子生物学》上。非编码RNA是一大类不编码蛋白质,但在细胞中起着调控作用的RNA分子。
越来越多的证据表明,一系列重大疾病的发生发展与非编码RNA调控失衡相关。
细胞中的分布
组成结构
与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,核糖核酸但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。
在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA(转运RNA),rRNA(核糖体RNA),mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所。
细胞中还有许多种类和功能不一的小型RNA,像是组成剪接体(spliceosome)的snRNA,负责rRNA成型的snoRNA,以及参与RNAi作用的miRNA与siRNA等,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。
20世纪90年代以来,又发现了RNAi(RNAinterference,RNA干扰)等等现象,证明RNA在基因表达调控中起到重要作用。
干扰机制
核糖核酸
上世纪八十年代,托马斯.R.切赫博士在研究RNA的成熟体结构中,发现了可以自我拼接的RNA催化作用(核糖核苷酸酶),并依此荣获1989年诺贝尔化学奖。经过多年的深度研究,切赫博士在DNA基因遗传过程中,发现了有趣的mRNA(信使RNA)和tRNA(转运RNA),从而揭开了遗传基因导致出生缺陷、大脑发育、营养吸收、细胞变异以及健康长寿等一系列人类生命密码的神秘面纱。
mRNA(信使RNA)人类的遗传信息主要贮存于DNA的碱基序列中,不过DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA上控制蛋白质合成的遗传信息传递给核糖体。切赫博士把这种起着传递遗传信息作用的特殊RNA。称为信使RNA(messenger RNA,mRNA)。
简单的说,mRNA就是为了完成基因表达过程中的遗传信息传递。
令人遗憾的是,在遗传转录形成的过程中,仅有25%序列经加工成为mRNA,其余的均呈现非编码序列的前体mRNA形式,这些形式的mRNA在分子大小上差别很大,是导致出生缺陷、大脑发育、营养吸收、细胞变异以及健康长寿等一系列问题的基因遗传因素的关键所在。
切赫博士历经20年升华钻研,成果破译了mRNA编码序列信息奥秘,通过特殊的生物干预手段,优化mRNA的序列加工,筛查和剔除基因排列诱发基因和细胞突变的序列,不仅确保mRNA的序列加工的有效与增强,而且从根本上避免不良基因传递或传递序列问题引发细胞突变等一系列遗传问题的发生。
mRNA编码序列信息的成果破译,奠定了OMG配方盐技术的可行性基础。
法尔和梅洛的发现科学家在矮牵牛花实验中所观察到的奇怪现象,其实是因为生物体内某种特定基因“沉默”了。导致基因“沉默”的机制就是RNA干扰机制。
此前,RNA分子只是被当作从DNA(脱氧核糖核酸)到蛋白质的“中间人”、将遗传信息从“蓝图”传到“工人”手中的“信使”。但法尔和梅洛的研究让人们认识到,RNA作用不可小视,它可以使特定基因开启、关闭、更活跃或更不活跃,从而影响生物的体型和发育等。
诺贝尔奖评审委员会在评价法尔和梅洛的研究成果时说:“他们的发现能解释许多令人困惑、相互矛盾的实验观察结果,并揭示了控制遗传信息流动的自然机制。这开启了一个新的研究领域。”
siRNA的作用原理
核糖核酸
RNA干扰技术的前景
RNA干扰技术不仅是研究基因功能的一种强大工具,不久的未来,这种技术也许能用来直接从源头上让致病基因“沉默”,以治疗癌症甚至艾滋病,在农业上也将大有可为。从这个角度来说,“沉默”真的是金。美国哈佛医学院研究人员已用动物实验表明,利用RNA干扰技术可治愈实验鼠的肝炎。
尽管尚有一些难题阻碍着RNA干扰技术的发展,但科学界普遍对这一新兴的生物工程技术寄予厚望。这也是诺贝尔奖评审委员会为什么不坚持研究成果要经过数十年实践验证的“惯例”,而破格为法尔和梅洛颁奖的原因之一。
诺贝尔生理学或医学奖评审委员会主席戈兰·汉松说:“我们为一种基本机制的发现颁奖。这种机制已被全世界的科学家证明是正确的,是给它发个诺贝尔奖的时候了。”
转录
转录是指DNA的双链解开,使RNA聚合酶可依照DNA上的碱基序列合成相对应之信使RNA(mRNA)的过程.在人体需要酵素或是蛋白质时,都会需要进行此过程,才能借由信使mRNA,将密码子带出核模外.好让核糖体进一步的利用信使RNA(mRNA)来翻译,合成所需之蛋白质‧DNA的碱基有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、T(胸腺嘧啶),而RNA之碱基无T(胸腺嘧啶),取而代之的是U(尿嘧啶),也就是有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶).在DNA中,A与T以两条氢键连结,G与C以三条氢键连结,但RNA只有U而无T,所以在转录时DNA上的若是A,mRNA就会是U,也就是取代原本T的位置‧如下图所示,右边DNA的一股碱基序列若为‘AAACCG’,而左方的DNA因配对而就会成‘TTTGGC’,但因RNA无T这个碱基,只有U,因此合成出来的mRNA对应之序列就为‘UUUGGC’因为DNA太大,无法出入核膜(细胞核的膜),所以才需要有mRNA的出现,让mRNA可穿过核孔(核膜上的孔洞)到达细胞质进行翻译(核糖体合成蛋白质的过程),因此,转录对不管是人类还是动物甚至是细菌都是不可或缺的重要反应。
翻译
游离在细胞质中的各种氨基酸,就以mRNA为模版合成具有一定氨基酸顺序的蛋白质,这一过程叫翻译。
首先氨基酸与tRNA结合生成氨酰-tRNA
然后是多肽链的起始:mRNA从核到胞质,在起始因子和Mg的作用下,小亚基与mRNA的起始部位结合,甲硫氨酰(蛋氨酸)—tRNA的反密码子,识别mRNA上的起始密码AuG(mRNA)互补结合,接着大亚基也结合上去,核糖体上一次可容纳二个密码子。(原核生物中为甲酰甲硫氨酰)
再是多肽链的延长:第二个密码对应的氨酰基—tRNA进入核糖体的A位,也称受位,密码与反密码的氢键,互补结合。在大亚基上的多肽链转移酶(转肽酶)作用下,供位(P位)的tRNA携带的氨基酸转移到A位的氨基酸后并与之形成肽键(—CO-NH—),tRNA脱离P位并离开P位,重新进入胞质,同时,核糖体沿mRNA往前移动,新的密码又处于核糖体的A位,与之对应的新氨基酰-tRNA又入A位,转肽键把二肽挂于此氨基酸后形成三肽,ribosome又往前移动,由此渐进渐进,如此反复循环,就使mRNA上的核苷酸顺序转变为氨基酸的排列顺序。
最后是多肽链的终止与释放:肽链的延长不是无限止的。当mRNA上出现终止密码时(UGA、U氨基酸和UGA),就无对应的氨基酸运入核糖体,肽链的合成停止,而被终止因子识别,进入A位,抑制转肽酶作用,使多肽链与tRNA之间水解脱下,顺着大亚基中央管全部释放出,离开核糖体。同时大小亚基与mRNA分离,可再与mRNA起始密码处结合,也可游离于胞质中或被降解,mRNA也可被降解。
自身调控
研发
2021年5月,中科院发现基因魔剪新系统,被广泛地应用于RNA敲低、RNA单碱基编辑、RNA定点修饰、RNA活细胞示踪以及核酸检测领域。
功能
mRNA
64个密码中,61个密码分别代表各种氨基酸。每种氨基酸少的只有一个密码,多的可有6个,但以2个及4个的居多数。此外,UAA、UAG、UGA这三个密码是肽链合成的终止信号,不代表任何氨基酸。在真核生物中,AUG既是甲硫氨酸的密码,又是肽链合成的起始信号;而在原核生物中,GUG(在真核生物中是缬氨酸的密码)和AUG样,都是甲酰甲硫氨酸的密码和肽链合成的起始相号。可见,除GUG外,所有的密码从细菌到高等生物都能适用,这一点为生物的共同起源学说提供了有力的佐证。
必须指出:⑨在mRNA整个分子中,从起始信号直至终止信号,其密码的三联体是连续的,密码与密码之间没有间隔的核苷酸;②起始信号AUG并非是mRNA的起始(5′端),而可以和5′端间隔若干个核苷酸;而且终止信号也不在mRNA的3′端。
tRNA
作为“搬运工具”的tRNA有很多种,体内20种氨基酸都有其自已特有的tRNA,所以,tRNA的种类不少于20种。tRNA在ATP供应能量和酶的作用下,可分别与特定的氨基酸结合。每个tRNA都有一个由三个核苷酸编成的“反密码”。这个反密码可以根据碱基配对的原则与mRNA上对应的密码配对,而且只有当反密码与mRNA上的密码相对应时才能配合,否则就“格格不入”。所以在翻译时,带着不同氨基酸的各个tRNA就能准确地在mRNA分子上“对号入座”,依次与典密码相合,这就保证了氨基酸能排列成一定的顺序。
tRNA上的反密码当然应能识别mRNA上相应的、互补的密码,并与之配对。然而用提纯的tRNA来进行实验时,发现一种tRNA能够识别几种密码。例如,丙氨酸tRNA,其反密码为IGC(5′>3′),可以识别三种密码。
rRNA
rRNA与多种蛋白质分子共同构成核蛋白体。核蛋白体相当于“装配机”,能促使tRNA所携带的氨基酰基缩合成肽。核蛋白体附着在mRNA上,并沿着mRNA长链的起始信号向终止信号移动。至于rRNA在蛋白质生物合成中的具体作用还不清楚。
参考资料
[1]
中科院发现基因魔剪新系统,有望助力RNA基因治疗_绿政公署_澎湃新闻-The Paper · 绿政公署_澎湃新闻-The Paper[引用日期2021-05-04]
[2]
吕杰,程静,侯晓蓓 . 生物医用材料导论 : 同济大学出版社 ,2016
相关合集
生物分子结构参阅
共6个词条1.2w阅读
DNA双螺旋
核酸的构象之一
核糖核酸
遗传信息载体
核酸
一种由许多核苷酸聚合成的化合物
查看更多